Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (11): 36-43.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0519
Previous Articles Next Articles
Received:
2023-05-30
Online:
2023-11-26
Published:
2023-12-20
Contact:
XIE Yan-jie
E-mail:hengzhou@njau.edu.cn;yjxie@njau.edu.cn
ZHOU Heng, XIE Yan-jie. Recent Progress in Oxidative Stress Signaling and Response in Plants[J]. Biotechnology Bulletin, 2023, 39(11): 36-43.
[1] |
Zhu JK. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2): 313-324.
doi: 10.1016/j.cell.2016.08.029 URL |
[2] |
Hancock JT, Veal D. Nitric oxide, other reactive signalling compounds, redox, and reductive stress[J]. J Exp Bot, 2021, 72(3): 819-829.
doi: 10.1093/jxb/eraa331 pmid: 32687173 |
[3] |
Mittler R, Zandalinas SI, Fichman Y, et al. Reactive oxygen species signalling in plant stress responses[J]. Nat Rev Mol Cell Biol, 2022, 23(10): 663-679.
doi: 10.1038/s41580-022-00499-2 |
[4] |
Del Río LA. ROS and RNS in plant physiology: an overview[J]. J Exp Bot, 2015, 66(10): 2827-2837.
doi: 10.1093/jxb/erv099 pmid: 25873662 |
[5] |
Zhou H, Huang JJ, Willems P, et al. Cysteine thiol-based post-translational modification: what do we know about transcription factors?[J]. Trends Plant Sci, 2023, 28(4): 415-428.
doi: 10.1016/j.tplants.2022.11.007 URL |
[6] |
Kolbert Z, Lindermayr C, Loake GJ. The role of nitric oxide in plant biology: current insights and future perspectives[J]. J Exp Bot, 2021, 72(3): 777-780.
doi: 10.1093/jxb/erab013 pmid: 33570126 |
[7] |
Zhang J, Zhou MJ, Zhou H, et al. Hydrogen sulfide, a signaling molecule in plant stress responses[J]. J Integr Plant Biol, 2021, 63(1): 146-160.
doi: 10.1111/jipb.13022 |
[8] |
Noctor G, Foyer CH. Intracellular redox compartmentation and ROS-related communication in regulation and signaling[J]. Plant Physiol, 2016, 171(3): 1581-1592.
doi: 10.1104/pp.16.00346 pmid: 27208308 |
[9] | Dietz KJ, Turkan I, Krieger-Liszkay A. Redox- and reactive oxygen species-dependent signaling into and out of the photosynthesizing chloroplast[J]. Plant Physiol, 2016, 171(3): 1541-1550. |
[10] |
Correa-Aragunde N, Foresi N, Lamattina L. Structure diversity of nitric oxide synthases(NOS): the emergence of new forms in photosynthetic organisms[J]. Front Plant Sci, 2013, 4: 232.
doi: 10.3389/fpls.2013.00232 pmid: 23847637 |
[11] |
Astier J, Gross I, Durner J. Nitric oxide production in plants: an update[J]. J Exp Bot, 2018, 69(14): 3401-3411.
doi: 10.1093/jxb/erx420 pmid: 29240949 |
[12] |
Chamizo-Ampudia A, Sanz-Luque E, Llamas A, et al. Nitrate reductase regulates plant nitric oxide homeostasis[J]. Trends Plant Sci, 2017, 22(2): 163-174.
doi: S1360-1385(16)30201-1 pmid: 28065651 |
[13] |
Gotor C, García I, Aroca Á, et al. Signaling by hydrogen sulfide and cyanide through post-translational modification[J]. J Exp Bot, 2019, 70(16): 4251-4265.
doi: 10.1093/jxb/erz225 pmid: 31087094 |
[14] |
Knuesting J, Scheibe R. Small molecules govern thiol redox switches[J]. Trends Plant Sci, 2018, 23(9): 769-782.
doi: S1360-1385(18)30137-7 pmid: 30149854 |
[15] |
Corpas FJ, González-Gordo S, Rodríguez-Ruiz M, et al. Thiol-based oxidative posttranslational modifications(OxiPTMs)of plant proteins[J]. Plant Cell Physiol, 2022, 63(7): 889-900.
doi: 10.1093/pcp/pcac036 URL |
[16] |
Poole LB, Schöneich C. Introduction: what we do and do not know regarding redox processes of thiols in signaling pathways[J]. Free Radic Biol Med, 2015, 80: 145-147.
doi: 10.1016/j.freeradbiomed.2015.02.005 URL |
[17] |
Sevilla F, Camejo D, Ortiz-Espín A, et al. The thioredoxin/peroxiredoxin/sulfiredoxin system: current overview on its redox function in plants and regulation by reactive oxygen and nitrogen species[J]. J Exp Bot, 2015, 66(10): 2945-2955.
doi: 10.1093/jxb/erv146 pmid: 25873657 |
[18] |
Chen LC, Wu R, Feng J, et al. Transnitrosylation mediated by the non-canonical catalase ROG1 regulates nitric oxide signaling in plants[J]. Dev Cell, 2020, 53(4): 444-457.e5.
doi: S1534-5807(20)30232-X pmid: 32330424 |
[19] |
Kneeshaw S, Gelineau S, Tada Y, et al. Selective protein denitrosylation activity of Thioredoxin-h5 modulates plant Immunity[J]. Mol Cell, 2014, 56(1): 153-162.
doi: 10.1016/j.molcel.2014.08.003 pmid: 25201412 |
[20] |
Zhang TR, Ma MY, Chen T, et al. Glutathione-dependent denitrosation of GSNOR1 promotes oxidative signalling downstream of H2 O2[J]. Plant Cell Environ, 2020, 43(5): 1175-1191.
doi: 10.1111/pce.v43.5 URL |
[21] |
Tian YC, Fan M, Qin ZX, et al. Hydrogen peroxide positively regulates brassinosteroid signaling through oxidation of the BRASSINAZOLE-RESISTANT1 transcription factor[J]. Nat Commun, 2018, 9(1): 1063.
doi: 10.1038/s41467-018-03463-x pmid: 29540799 |
[22] |
Shen J, Zhang J, Zhou MJ, et al. Persulfidation-based modification of cysteine desulfhydrase and the NADPH oxidase RBOHD controls guard cell abscisic acid signaling[J]. Plant Cell, 2020, 32(4): 1000-1017.
doi: 10.1105/tpc.19.00826 URL |
[23] |
Wu FH, Chi Y, Jiang ZH, et al. Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis[J]. Nature, 2020, 578(7796): 577-581.
doi: 10.1038/s41586-020-2032-3 |
[24] |
Drerup MM, Schlücking K, Hashimoto K, et al. The Calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF[J]. Mol Plant, 2013, 6(2): 559-569.
doi: 10.1093/mp/sst009 URL |
[25] |
Han JP, Köster P, Drerup MM, et al. Fine-tuning of RBOHF activity is achieved by differential phosphorylation and Ca2+ binding[J]. New Phytol, 2019, 221(4): 1935-1949.
doi: 10.1111/nph.2019.221.issue-4 URL |
[26] |
Vogelsang L, Dietz KJ. Plant thiol peroxidases as redox sensors and signal transducers in abiotic stress acclimation[J]. Free Radic Biol Med, 2022, 193(Pt 2): 764-778.
doi: 10.1016/j.freeradbiomed.2022.11.019 URL |
[27] |
Bi GZ, Hu M, Fu L, et al. The cytosolic thiol peroxidase PRXIIB is an intracellular sensor for H2O2 that regulates plant immunity through a redox relay[J]. Nat Plants, 2022, 8(10): 1160-1175.
doi: 10.1038/s41477-022-01252-5 |
[28] |
Zhou H, Zhang F, Zhai FC, et al. Rice GLUTATHIONE PEROXIDASE1-mediated oxidation of bZIP68 positively regulates ABA-independent osmotic stress signaling[J]. Mol Plant, 2022, 15(4): 651-670.
doi: 10.1016/j.molp.2021.11.006 URL |
[29] |
Chae HB, Kim MG, Kang CH, et al. Redox sensor QSOX1 regulates plant immunity by targeting GSNOR to modulate ROS generation[J]. Mol Plant, 2021, 14(8): 1312-1327.
doi: 10.1016/j.molp.2021.05.004 pmid: 33962063 |
[30] |
Ji T, Zheng LH, Wu JL, et al. The thioesterase APT1 is a bidirectional-adjustment redox sensor[J]. Nat Commun, 2023, 14(1): 2807.
doi: 10.1038/s41467-023-38464-y pmid: 37198152 |
[31] |
Duan M, Zhang RX, Zhu FG, et al. A lipid-anchored NAC transcription factor is translocated into the nucleus and activates Glyoxalase I expression during drought stress[J]. Plant Cell, 2017, 29(7): 1748-1772.
doi: 10.1105/tpc.17.00044 URL |
[32] |
Liu WC, Song RF, Qiu YM, et al. Sulfenylation of ENOLASE2 facilitates H2O2-conferred freezing tolerance in Arabidopsis[J]. Dev Cell, 2022, 57(15): 1883-1898.e5.
doi: 10.1016/j.devcel.2022.06.012 URL |
[33] |
Liu WC, Song RF, Zheng SQ, et al. Coordination of plant growth and abiotic stress responses by tryptophan synthase β subunit 1 through modulation of tryptophan and ABA homeostasis in Arabidopsis[J]. Mol Plant, 2022, 15(6): 973-990.
doi: 10.1016/j.molp.2022.04.009 URL |
[34] |
Yuan HM, Liu WC, Lu YT. CATALASE2 coordinates SA-mediated repression of both auxin accumulation and JA biosynthesis in plant defenses[J]. Cell Host Microbe, 2017, 21(2): 143-155.
doi: 10.1016/j.chom.2017.01.007 URL |
[35] |
Fu ZW, Feng YR, Gao X, et al. Salt stress-induced chloroplastic hydrogen peroxide stimulates pdTPI sulfenylation and methylglyoxal accumulation[J]. Plant Cell, 2023, 35(5): 1593-1616.
doi: 10.1093/plcell/koad019 URL |
[36] |
Li JG, Fan M, Hua WB, et al. Brassinosteroid and hydrogen peroxide interdependently induce stomatal opening by promoting guard cell starch degradation[J]. Plant Cell, 2020, 32(4): 984-999.
doi: 10.1105/tpc.19.00587 URL |
[37] |
Tian YC, Zhao N, Wang MM, et al. Integrated regulation of periclinal cell division by transcriptional module of BZR1-SHR in Arabidopsis roots[J]. New Phytol, 2022, 233(2): 795-808.
doi: 10.1111/nph.v233.2 URL |
[38] |
Lee ES, Park JH, Wi SD, et al. Redox-dependent structural switch and CBF activation confer freezing tolerance in plants[J]. Nat Plants, 2021, 7(7): 914-922.
doi: 10.1038/s41477-021-00944-8 pmid: 34155371 |
[39] |
Camejo D, Ortiz-Espín A, Lázaro JJ, et al. Functional and structural changes in plant mitochondrial PrxII F caused by NO[J]. J Proteomics, 2015, 119: 112-125.
doi: 10.1016/j.jprot.2015.01.022 pmid: 25682994 |
[40] |
Klupczyńska EA, Dietz KJ, Małecka A, et al. Mitochondrial peroxiredoxin-IIF(PRXIIF)activity and function during seed aging[J]. Antioxidants, 2022, 11(7): 1226.
doi: 10.3390/antiox11071226 URL |
[41] |
He NY, Chen LS, Sun AZ, et al. A nitric oxide burst at the shoot apex triggers a heat-responsive pathway in Arabidopsis[J]. Nat Plants, 2022, 8(4): 434-450.
doi: 10.1038/s41477-022-01135-9 |
[42] |
Ying SB, Yang WJ, Li P, et al. Phytochrome B enhances seed germination tolerance to high temperature by reducing S-nitrosylation of HFR1[J]. EMBO Rep, 2022, 23(10): e54371.
doi: 10.15252/embr.202154371 URL |
[43] |
Liu H, Wang JC, Liu JH, et al. Hydrogen sulfide(H2S)signaling in plant development and stress responses[J]. aBIOTECH, 2021, 2(1): 32-63.
doi: 10.1007/s42994-021-00035-4 |
[44] | Huang JJ, Xie YJ. Hydrogen sulfide signaling in plants[J]. Antioxid Redox Signal, 2023, 10.1089/ars.2023.0267. |
[45] |
Chen SS, Jia HL, Wang XF, et al. Hydrogen sulfide positively regulates abscisic acid signaling through persulfidation of SnRK2.6 in guard cells[J]. Mol Plant, 2020, 13(5): 732-744.
doi: S1674-2052(20)30004-6 pmid: 31958520 |
[46] |
Zhou MJ, Zhang J, Shen J, et al. Hydrogen sulfide-linked persulfidation of ABI4 controls ABA responses through the transactivation of MAPKKK18 in Arabidopsis[J]. Mol Plant, 2021, 14(6): 921-936.
doi: 10.1016/j.molp.2021.03.007 URL |
[47] |
Zhou H, Zhou Y, Zhang F, et al. Persulfidation of nitrate reductase 2 is involved in l-cysteine desulfhydrase-regulated rice drought tolerance[J]. Int J Mol Sci, 2021, 22(22): 12119.
doi: 10.3390/ijms222212119 URL |
[48] |
Laureano-Marín AM, Aroca Á, Esther Pérez-Pérez M, et al. Abscisic acid-triggered persulfidation of the cys protease ATG4 mediates regulation of autophagy by sulfide[J]. Plant Cell, 2020, 32(12): 3902-3920.
doi: 10.1105/tpc.20.00766 URL |
[49] |
Aroca A, Yruela I, Gotor C, et al. Persulfidation of ATG18a regulates autophagy under ER stress in Arabidopsis[J]. Proc Natl Acad Sci USA, 2021, 118(20): e2023604118.
doi: 10.1073/pnas.2023604118 URL |
[50] |
Li JS, Chen SS, Wang XF, et al. Hydrogen sulfide disturbs actin polymerization via S-sulfhydration resulting in stunted root hair growth[J]. Plant Physiol, 2018, 178(2): 936-949.
doi: 10.1104/pp.18.00838 URL |
[51] |
Sun C, Yao GF, Li LX, et al. E3 ligase BRG3 persulfidation delays tomato ripening by reducing ubiquitination of the repressor WRKY71[J]. Plant Physiol, 2023, 192(1): 616-632.
doi: 10.1093/plphys/kiad070 pmid: 36732924 |
[52] |
Yun BW, Feechan A, Yin MH, et al. S-nitrosylation of NADPH oxidase regulates cell death in plant immunity[J]. Nature, 2011, 478(7368): 264-268.
doi: 10.1038/nature10427 |
[53] | Kovacs I, Holzmeister C, Wirtz M, et al. ROS-mediated inhibition of S-nitrosoglutathione reductase contributes to the activation of anti-oxidative mechanisms[J]. Front Plant Sci, 2016, 7: 1669. |
[54] |
Hu JL, Huang XH, Chen LC, et al. Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in Arabidopsis[J]. Plant Physiol, 2015, 167(4): 1731-1746.
doi: 10.1104/pp.15.00026 URL |
[55] |
Aroca A, Benito JM, Gotor C, et al. Persulfidation proteome reveals the regulation of protein function by hydrogen sulfide in diverse biological processes in Arabidopsis[J]. J Exp Bot, 2017, 68(17): 4915-4927.
doi: 10.1093/jxb/erx294 URL |
[56] |
Huang JJ, Willems P, Wei B, et al. Mining for protein S-sulfenylation in Arabidopsis uncovers redox-sensitive sites[J]. Proc Natl Acad Sci USA, 2019, 116(42): 21256-21261.
doi: 10.1073/pnas.1906768116 URL |
[57] |
Wei B, Willems P, Huang JJ, et al. Identification of sulfenylated cysteines in Arabidopsis thaliana proteins using a disulfide-linked peptide reporter[J]. Front Plant Sci, 2020, 11: 777.
doi: 10.3389/fpls.2020.00777 pmid: 32714340 |
[58] |
Jurado-Flores A, Romero LC, Gotor C. Label-free quantitative proteomic analysis of nitrogen starvation in Arabidopsis root reveals new aspects of H2S signaling by protein persulfidation[J]. Antioxidants, 2021, 10(4): 508.
doi: 10.3390/antiox10040508 URL |
[59] | Jurado-Flores A, Aroca A, Romero LC, et al. Sulfide promotes tolerance to drought through protein persulfidation in Arabidopsis[J]. J Exp Bot, 2023, erad165. doi:10.1093/jxb/erad165. |
[1] | KANG Ling-yun, HAN Lu-lu, HAN De-ping, CHEN Jian-sheng, GAN Han-ling, XING Kai, MA You-ji, CUI Kai. Effect of Melatonin on Protecting the Jejunum Mucosal Epithelial Cells from Oxidative Stress Damage [J]. Biotechnology Bulletin, 2023, 39(9): 291-299. |
[2] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[3] | WANG Qi, HU Zhe, FU Wei, LI Guang-zhe, HAO Lin. Regulation of Burkholderia sp. GD17 on the Drought Tolerance of Cucumber Seedlings [J]. Biotechnology Bulletin, 2023, 39(3): 163-175. |
[4] | ZHU Ye-sheng, WU Guo-qiang, WEI Ming. Roles of Plasma Membrane Na+/H+ Antiporter SOS1 in Maintaining Ionic Homeostasis of Plants [J]. Biotechnology Bulletin, 2023, 39(12): 16-32. |
[5] | YAN Xiong-ying, WANG Zhen, WANG Xia, YANG Shi-hui. Microbial Sulfur Metabolism and Stress Resistance [J]. Biotechnology Bulletin, 2023, 39(11): 150-167. |
[6] | ZHANG Xiao-yan, YANG Shu-hua, DING Yang-lin. Molecular Mechanism of Cold Signal Perception and Transduction in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 28-35. |
[7] | GAO Xiao-rong, DING Yao, LV Jun. Effects of Pseudomonas sp. PR3,a Pyrene-degrading Bacterium with Plant Growth-promoting Properties,on Rice Growth Under Pyrene Stress [J]. Biotechnology Bulletin, 2022, 38(9): 226-236. |
[8] | XUE Xian-li, WANG Jing-ran, BI Hang-hang, WANG De-pei. Effect of Spt7 Overexpression of on the Growth and Stress Resistance of Aspergillus niger [J]. Biotechnology Bulletin, 2022, 38(5): 112-122. |
[9] | ZU Guo-qiang, HU Zhe, WANG Qi, LI Guang-zhe, HAO Lin. Regulatory Role of Burkholderia sp. GD17 in Rice Seedling’s Responses to Cadmium Stress [J]. Biotechnology Bulletin, 2022, 38(4): 153-162. |
[10] | JIA Hai-hong, LI Bing-qing. Research Progress in the Post-translational Modification of Superoxide Dismutase [J]. Biotechnology Bulletin, 2022, 38(2): 237-244. |
[11] | ZHANG Xiao-ni, WENG Yi-chun, FAN Yi-hao, WANG Xiao-juan, ZHAO Jia-yu, ZHANG Yun-long. Mito-OS-Timer:A Targeted Fluorescent Stopwatch for Monitoring Mitochondrial Oxidative Stress [J]. Biotechnology Bulletin, 2022, 38(10): 97-105. |
[12] | LI Lu-ping, LIANG Da-cheng. The Subcellular Communication Driven by Reactive Oxygen Species in Plants [J]. Biotechnology Bulletin, 2021, 37(5): 165-173. |
[13] | YANG Li, WANG Bo, LI Wen-jiao, WANG Xing-jun, ZHAO Shu-zhen. Research Progress on Production,Scavenging and Signal Transduction of ROS Under Drought Stress [J]. Biotechnology Bulletin, 2021, 37(4): 194-203. |
[14] | LIU Jing, LI Ya-chao, ZHOU Meng-yan, WU Peng-fei, MA Xiang-qing, LI Ming. Advances in the Studies of Plant Protein Post-translational Modification [J]. Biotechnology Bulletin, 2021, 37(1): 67-76. |
[15] | PENG Wen-chao, LIU Jian-xin, WANG Di-ming. Research Progress on Metabolic Causes for Hypoxic Stress in Mammalian Animals [J]. Biotechnology Bulletin, 2021, 37(1): 262-271. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||