Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (2): 99-108.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0797
Previous Articles Next Articles
ZHANG Chao(), WANG Zi-rui, SUN Ya-li, MAO Xin-chen, TANG Jia-qi, YU Heng-xiu()
Received:
2023-08-16
Online:
2024-02-26
Published:
2024-03-13
Contact:
YU Heng-xiu
E-mail:chaozhang@yzu.edu.cn;hxyu@yzu.edu.cn
ZHANG Chao, WANG Zi-rui, SUN Ya-li, MAO Xin-chen, TANG Jia-qi, YU Heng-xiu. Functional Study of Vitamin B1 Synthesis-related Gene OsTHIC in Rice[J]. Biotechnology Bulletin, 2024, 40(2): 99-108.
Primer name | Forward primer sequence(5'-3') | Reverse primer sequence(5'-3') |
---|---|---|
OsTHIC-RT | AAGATGTGCAGGACAGGAGC | ACATGGCCAGATTCCTCGTG |
OsTH1-RT | CGCCGTCGAGGACCTCAT | GACTGCGTGTCGTGGTTCATC |
OsTHI1-RT | TACGACGAGCAGGAGGACTAC | CGTTGAACAGCTTCACGTTGG |
OsPALE1-RT | GCCAATACATCGCCCAGG | CGACGATGGTGGCCTTGT |
TPK1-RT | AGGTCCGCATGAGGTACAAG | TCAACTATTTCGGCACCCAG |
TPK2-RT | GCCCCGCCTGTGGACTCA | CGGGTGCTTTCATAGTCTGGA |
TPK3-RT | TCAGGACACCACCGATTTAC | CATCTCGTGGTCAAACCTTC |
Ubiquitin | CAAGATGATCTGCCGCAAATGC | TTAACCAGTCCATGAACCCG |
Table 1 Sequences of primers used in RT-qPCR
Primer name | Forward primer sequence(5'-3') | Reverse primer sequence(5'-3') |
---|---|---|
OsTHIC-RT | AAGATGTGCAGGACAGGAGC | ACATGGCCAGATTCCTCGTG |
OsTH1-RT | CGCCGTCGAGGACCTCAT | GACTGCGTGTCGTGGTTCATC |
OsTHI1-RT | TACGACGAGCAGGAGGACTAC | CGTTGAACAGCTTCACGTTGG |
OsPALE1-RT | GCCAATACATCGCCCAGG | CGACGATGGTGGCCTTGT |
TPK1-RT | AGGTCCGCATGAGGTACAAG | TCAACTATTTCGGCACCCAG |
TPK2-RT | GCCCCGCCTGTGGACTCA | CGGGTGCTTTCATAGTCTGGA |
TPK3-RT | TCAGGACACCACCGATTTAC | CATCTCGTGGTCAAACCTTC |
Ubiquitin | CAAGATGATCTGCCGCAAATGC | TTAACCAGTCCATGAACCCG |
Fig. 1 Phenotypic characterization and photosynthesis pigment measurement of wll1 A: Phenotypes of of the seedlings at one-, two-, and three-leaf stage of wild type and wll1. Bar=1 cm. B: Phenotypes of the seedlings at four-leaf stage of wild type and wll1. Arrows indicate white leaves. Bar=1 cm. C: Photosynthesis pigment content of the third leaves of wild type and wll1 at four-leaf stage. D: Photosynthesis pigment measurement of the fourth leaves of wild type and wll1 at four-leaf stage. n.s. indicates no significant differencest. Asterisks indicate significant differences(**P <0.01), the same below
Position | Mutation type | IndexWT | IndexMutant | Annotation |
---|---|---|---|---|
Chr3-24858822 | G to A | 0.29 | 1 | LOC_Os03g44240 Intron |
Chr3-25176848 | G to A | 0.41 | 1 | Intergenic region |
Chr3-26049430 | G to A | 0.11 | 1 | Intergenic region |
Chr3-26101874 | G to A | 0.15 | 1 | Intergenic region |
Chr3-26268328 | G to A | 0.37 | 1 | Intergenic region |
Chr3-26295456 | G to A | 0.39 | 1 | LOC_Os03g46480 Intron |
Chr3-26372631 | G to A | 0.36 | 1 | LOC_Os03g46590 Exon |
Chr3-26862420 | T to C | 0.22 | 1 | Intergenic region |
Chr3-26955051 | G to A | 0.25 | 1 | LOC_Os03g47610 Exon |
Chr3-27059507 | G to A | 0.36 | 1 | LOC_Os03g47740 Exon |
Chr3-27128816 | G to A | 0.32 | 1 | LOC_Os03g47790 Intron |
Chr3-27371505 | G to A | 0.35 | 1 | Intergenic region |
Chr3-27377064 | G to A | 0.31 | 1 | LOC_Os03g48140 Exon |
Chr3-27379000 | G to A | 0.29 | 1 | LOC_Os03g48140 Intron |
Chr3-27418905 | G to A | 0.35 | 1 | LOC_Os03g48180 Promoter |
Table 2 Candidate mutation sites in wll1
Position | Mutation type | IndexWT | IndexMutant | Annotation |
---|---|---|---|---|
Chr3-24858822 | G to A | 0.29 | 1 | LOC_Os03g44240 Intron |
Chr3-25176848 | G to A | 0.41 | 1 | Intergenic region |
Chr3-26049430 | G to A | 0.11 | 1 | Intergenic region |
Chr3-26101874 | G to A | 0.15 | 1 | Intergenic region |
Chr3-26268328 | G to A | 0.37 | 1 | Intergenic region |
Chr3-26295456 | G to A | 0.39 | 1 | LOC_Os03g46480 Intron |
Chr3-26372631 | G to A | 0.36 | 1 | LOC_Os03g46590 Exon |
Chr3-26862420 | T to C | 0.22 | 1 | Intergenic region |
Chr3-26955051 | G to A | 0.25 | 1 | LOC_Os03g47610 Exon |
Chr3-27059507 | G to A | 0.36 | 1 | LOC_Os03g47740 Exon |
Chr3-27128816 | G to A | 0.32 | 1 | LOC_Os03g47790 Intron |
Chr3-27371505 | G to A | 0.35 | 1 | Intergenic region |
Chr3-27377064 | G to A | 0.31 | 1 | LOC_Os03g48140 Exon |
Chr3-27379000 | G to A | 0.29 | 1 | LOC_Os03g48140 Intron |
Chr3-27418905 | G to A | 0.35 | 1 | LOC_Os03g48180 Promoter |
Fig. 2 wll1-like phenotype by knocking out OsTHIC A: Gene structure of OsTHIC. The triangle indicates the position of mutation in wll1. Nucleotide and amino acid modification in wll1 are listed below. The position of target sequence for gene editing is marked with arrow. Blue line indicates the position of riboswitch. B: Target sequence for CRISPR/Cas9 gene editing and genotype of knock-out mutants of OsTHIC(OsTHIC-Cr). Inserted nucleotide is shown in red. C:Phenotype of OsTHIC-Cr. Bar=5 cm
Fig. 3 Expression pattern of OsTHIC and subcellular localization of OsTHIC A: Relative expressions of OsTHIC in different tissues. Seed 1: Seeds 2 DAF(days after pollination). Seed 2: Seeds 7 DAF. Seed 3: Seeds 25 DAF. Different letters indicate significant difference. B: Subcellular localization of OsTHIC in rice protoplasts. Chloroplast auto-fluorescence is in red
Fig. 4 Vitamin B1 content and phenotype after exogenous vitamin B1 treatment of OsTHIC mutant A: Vitamin B1 content in the fourth leaf of wild type, wll1, and OsTHIC-Cr. B: Phenotype of wll1 plant sprayed with exogenous vitamin B1. Bar=5 cm
Fig. 5 Influences on expressions of vitamin B1 biosynthesis genes by mutation of OsTHIC and exogenous vitamin B1 treatment A: Comparison of expression level of vitamin B1 biosynthesis genes between wild type and wll1. B: Comparison of expression level of vitamin B1 biosynthesis genes between plants treated with vitamin B1 and control plants
Fig. 6 Analysis of untargeted metabolomics of wild type and wll1 A: PCA of metabolite between wild type and wll1. B: Volcano map of differential metabolite between wild type and wll1. C: Enrichment analysis of differential metabolite KEGG pathway
[1] |
Sambon M, Wins P, Bettendorff L. Neuroprotective effects of thiamine and precursors with higher bioavailability: focus on benfotiamine and dibenzoylthiamine[J]. Int J Mol Sci, 2021, 22(11): 5418.
doi: 10.3390/ijms22115418 URL |
[2] |
Fardet A. New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre?[J]. Nutr Res Rev, 2010, 23(1): 65-134.
doi: 10.1017/S0954422410000041 pmid: 20565994 |
[3] |
Huang HM, Chen HL, Gibson GE. Thiamine and oxidants interact to modify cellular calcium stores[J]. Neurochem Res, 2010, 35(12): 2107-2116.
doi: 10.1007/s11064-010-0242-z URL |
[4] |
Nosaka K. Recent progress in understanding thiamin biosynthesis and its genetic regulation in Saccharomyces cerevisiae[J]. Appl Microbiol Biotechnol, 2006, 72(1): 30-40.
doi: 10.1007/s00253-006-0464-9 URL |
[5] |
Whitfield KC, Smith TJ, Rohner F, et al. Thiamine fortification strategies in low- and middle-income settings: a review[J]. Ann N Y Acad Sci, 2021, 1498(1): 29-45.
doi: 10.1111/nyas.v1498.1 URL |
[6] |
Lonsdale D. A review of the biochemistry, metabolism and clinical benefits of thiamin(e)and its derivatives[J]. Evid Based Complement Alternat Med, 2006, 3(1): 49-59.
doi: 10.1093/ecam/nek009 URL |
[7] |
Dong W, Stockwell VO, Goyer A. Enhancement of thiamin content in Arabidopsis thaliana by metabolic engineering[J]. Plant Cell Physiol, 2015, 56(12): 2285-2296.
doi: 10.1093/pcp/pcv148 pmid: 26454882 |
[8] |
Goyer A. Thiamine in plants: aspects of its metabolism and functions[J]. Phytochemistry, 2010, 71: 1615-1624.
doi: 10.1016/j.phytochem.2010.06.022 pmid: 20655074 |
[9] |
Woodward JB, Abeydeera ND, Paul D, et al. A maize thiamine auxotroph is defective in shoot meristem maintenance[J]. Plant Cell, 2010, 22(10): 3305-3317.
doi: 10.1105/tpc.110.077776 URL |
[10] |
Boubakri H, Gargouri M, Mliki A, et al. Vitamins for enhancing plant resistance[J]. Planta, 2016, 244(3): 529-543.
doi: 10.1007/s00425-016-2552-0 pmid: 27315123 |
[11] |
Ahn IP, Kim S, Lee YH, et al. Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis[J]. Plant Physiol, 2007, 143(2): 838-848.
doi: 10.1104/pp.106.092627 URL |
[12] |
Ahn IP, Kim S, Lee YH. Vitamin B1 functions as an activator of plant disease resistance[J]. Plant Physiol, 2005, 138(3): 1505-1515.
doi: 10.1104/pp.104.058693 URL |
[13] |
Rapala-Kozik M, Kowalska E, Ostrowska K. Modulation of thiamine metabolism in Zea mays seedlings under conditions of abiotic stress[J]. J Exp Bot, 2008, 59(15): 4133-4143.
doi: 10.1093/jxb/ern253 pmid: 18940932 |
[14] |
Tunc-Ozdemir M, Miller G, Song LH, et al. Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis[J]. Plant Physiol, 2009, 151(1): 421-432.
doi: 10.1104/pp.109.140046 pmid: 19641031 |
[15] |
Rapala-Kozik M, Wolak N, Kujda M, et al. The upregulation of thiamine(vitamin B1)biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response[J]. BMC Plant Biol, 2012, 12: 2.
doi: 10.1186/1471-2229-12-2 pmid: 22214485 |
[16] |
Sayed SA, Gadallah MAA. Effects of shoot and root application of thiamin on salt-stressed sunflower plants[J]. Plant Growth Regul, 2002, 36(1): 71-80.
doi: 10.1023/A:1014784831387 URL |
[17] |
Guan JC, Hasnain G, Garrett TJ, et al. Divisions of labor in the thiamin biosynthetic pathway among organs of maize[J]. Front Plant Sci, 2014, 5: 370.
doi: 10.3389/fpls.2014.00370 URL |
[18] |
Mimura M, Zallot R, Niehaus TD, et al. Arabidopsis TH2 encodes the orphan enzyme thiamin monophosphate phosphatase[J]. Plant Cell, 2016, 28(10): 2683-2696.
doi: 10.1105/tpc.16.00600 URL |
[19] |
Jurgenson CT, Begley TP, Ealick SE. The structural and biochemical foundations of thiamin biosynthesis[J]. Annu Rev Biochem, 2009, 78: 569-603.
doi: 10.1146/annurev.biochem.78.072407.102340 pmid: 19348578 |
[20] |
Hsieh WY, Liao JC, Wang HT, et al. The Arabidopsis thiamin-deficient mutant pale green1 lacks thiamin monophosphate phosphatase of the vitamin B1 biosynthesis pathway[J]. Plant J, 2017, 91(1): 145-157.
doi: 10.1111/tpj.2017.91.issue-1 URL |
[21] |
Ajjawi I, Rodriguez Milla MA, Cushman J, et al. Thiamin pyrophosphokinase is required for thiamin cofactor activation in Arabidopsis[J]. Plant Mol Biol, 2007, 65(1-2): 151-162.
pmid: 17611796 |
[22] |
Martinis J, Gas-Pascual E, Szydlowski N, et al. Long-distance transport of thiamine(vitamin B1)is concomitant with that of polyamines[J]. Plant Physiol, 2016, 171(1): 542-553.
doi: 10.1104/pp.16.00009 pmid: 27006489 |
[23] |
Raschke M, Bürkle L, Müller N, et al. Vitamin B1 biosynthesis in plants requires the essential iron sulfur cluster protein, THIC[J]. Proc Natl Acad Sci USA, 2007, 104(49): 19637-19642.
doi: 10.1073/pnas.0709597104 pmid: 18048325 |
[24] |
Kong DY, Zhu YX, Wu HL, et al. AtTHIC, a gene involved in thiamine biosynthesis in Arabidopsis thaliana[J]. Cell Res, 2008, 18(5): 566-576.
doi: 10.1038/cr.2008.35 |
[25] |
Kong WY, Yu XW, Chen HY, et al. The catalytic subunit of magnesium-protoporphyrin IX monomethyl ester cyclase forms a chloroplast complex to regulate chlorophyll biosynthesis in rice[J]. Plant Mol Biol, 2016, 92(1-2): 177-191.
doi: 10.1007/s11103-016-0513-4 pmid: 27514852 |
[26] |
Fekih R, Takagi H, Tamiru M, et al. MutMap+: genetic mapping and mutant identification without crossing in rice[J]. PLoS One, 2013, 8(7): e68529.
doi: 10.1371/journal.pone.0068529 URL |
[27] |
Lai ZJ, Tsugawa H, Wohlgemuth G, et al. Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics[J]. Nat Methods, 2018, 15(1): 53-56.
doi: 10.1038/nmeth.4512 pmid: 29176591 |
[28] |
Strobbe S, Verstraete J, Stove C, et al. Metabolic engineering of rice endosperm towards higher vitamin B1 accumulation[J]. Plant Biotechnol J, 2021, 19(6): 1253-1267.
doi: 10.1111/pbi.13545 pmid: 33448624 |
[29] |
Dong W, Thomas N, Ronald PC, et al. Overexpression of thiamin biosynthesis genes in rice increases leaf and unpolished grain thiamin content but not resistance to Xanthomonas oryzae pv. oryzae[J]. Front Plant Sci, 2016, 7: 616.
doi: 10.3389/fpls.2016.00616 pmid: 27242822 |
[30] |
Strobbe S, Van Der Straeten D. Toward eradication of B-vitamin deficiencies: considerations for crop biofortification[J]. Front Plant Sci, 2018, 9: 443.
doi: 10.3389/fpls.2018.00443 pmid: 29681913 |
[31] |
Win AZ. Micronutrient deficiencies in early childhood can lower a country's GDP: the Myanmar example[J]. Nutrition, 2016, 32(1): 138-140.
doi: 10.1016/j.nut.2015.06.011 pmid: 26421387 |
[32] |
Nie YS, Yu L, Mao LL, et al. Vitamin B1 THIAMIN REQUIRING1 synthase mediates the maintenance of chloroplast function by regulating sugar and fatty acid metabolism in rice[J]. J Integr Plant Biol, 2022, 64(8): 1575-1595.
doi: 10.1111/jipb.v64.8 URL |
[33] |
Bocobza SE, Malitsky S, Araújo WL, et al. Orchestration of thiamin biosynthesis and central metabolism by combined action of the thiamin pyrophosphate riboswitch and the circadian clock in Arabidopsis[J]. Plant Cell, 2013, 25(1): 288-307.
doi: 10.1105/tpc.112.106385 URL |
[34] |
Winkler W, Nahvi A, Breaker RR. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression[J]. Nature, 2002, 419(6910): 952-956.
doi: 10.1038/nature01145 URL |
[35] |
Mironov AS, Gusarov I, Rafikov R, et al. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria[J]. Cell, 2002, 111(5): 747-756.
pmid: 12464185 |
[36] |
Sudarsan N, Barrick JE, Breaker RR. Metabolite-binding RNA domains are present in the genes of eukaryotes[J]. RNA, 2003, 9(6): 644-647.
pmid: 12756322 |
[37] |
Thore S, Leibundgut M, Ban N. Structure of the eukaryotic thiamine pyrophosphate riboswitch with its regulatory ligand[J]. Science, 2006, 312(5777): 1208-1211.
pmid: 16675665 |
[1] | LI Xue, LI Rong-ou, KONG Mei-yi, HUANG Lei. The Growth Promoting Effect of Bacillus amyloliquefaciens SQ-2 on Rice [J]. Biotechnology Bulletin, 2024, 40(2): 109-119. |
[2] | LIN Xin-yan, ZHANG Chuan-zhong, DAI Bing, WANG Xin-heng, LIU Jian-feng, WEN Li, XU Xing-jian, FANG Jun. Advances in Genetic and Molecular Mechanisms of Pre-harvest Sprouting in Rice [J]. Biotechnology Bulletin, 2024, 40(1): 24-31. |
[3] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[4] | ZHAN Yan, ZHOU Li-bin, JIN Wen-jie, DU Yan, YU Li-xia, QU Ying, MA Yong-gui, LIU Rui-yuan. Research Progress in Plant Leaf Color Mutation Induced by Radiation [J]. Biotechnology Bulletin, 2023, 39(8): 106-113. |
[5] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[6] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[7] | LI Yu, LI Su-zhen, CHEN Ru-mei, LU Hai-qiang. Advances in the Regulation of Iron Homeostasis by bHLH Transcription Factors in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 26-36. |
[8] | LIANG Cheng-gang, WANG Yan, LI Tian, OHSUGI Ryu, AOKI Naohiro. Effect of SP1 on Panicle Architecture by Regulating Carbohydrate Remobilization [J]. Biotechnology Bulletin, 2023, 39(5): 152-159. |
[9] | ZHOU Ding-ding, LI Hui-hu, TANG Xing-yong, YU Fa-xin, KONG Dan-yu, LIU Yi. Research Progress in the Biosynthesis and Regulation of Glycyrrhizic Acid and Liquiritin [J]. Biotechnology Bulletin, 2023, 39(5): 44-53. |
[10] | YANG Mao, LIN Yu-feng, DAI Yang-shuo, PAN Su-jun, PENG Wei-ye, YAN Ming-xiong, LI Wei, WANG Bing, DAI Liang-ying. OsDIS1 Negatively Regulates Rice Drought Tolerance Through Antioxidant Pathways [J]. Biotechnology Bulletin, 2023, 39(2): 88-95. |
[11] | JIANG Min-xuan, LI Kang, LUO Liang, LIU Jian-xiang, LU Hai-ping. Advances on the Expressions of Foreign Proteins in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 110-122. |
[12] | JIANG Nan, SHI Yang, ZHAO Zhi-hui, LI Bin, ZHAO Yi-hui, YANG Jun-biao, YAN Jia-ming, JIN Yu-fan, CHEN Ji, HUANG Jin. Expression and Functional Analysis of OsPT1 Gene in Rice Under Cadmium Stress [J]. Biotechnology Bulletin, 2023, 39(1): 166-174. |
[13] | CHEN Guang, LI Jia, DU Rui-ying, WANG Xu. Identification and Gene Functional Analysis of Salinity-hypersensitive Mutant ss2 in Rice [J]. Biotechnology Bulletin, 2022, 38(9): 158-166. |
[14] | GAO Xiao-rong, DING Yao, LV Jun. Effects of Pseudomonas sp. PR3,a Pyrene-degrading Bacterium with Plant Growth-promoting Properties,on Rice Growth Under Pyrene Stress [J]. Biotechnology Bulletin, 2022, 38(9): 226-236. |
[15] | HUANG Jing, ZHU Liang, XUE Peng-bo, FU Qiang. Research on Mechanism and QTL Mapping Associated with Cadmium Accumulation in Rice Leaves and Grains [J]. Biotechnology Bulletin, 2022, 38(8): 118-126. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||