Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (1): 24-31.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0786
Previous Articles Next Articles
LIN Xin-yan1,2(), ZHANG Chuan-zhong2, DAI Bing2, WANG Xin-heng2, LIU Jian-feng1, WEN Li3, XU Xing-jian3, FANG Jun2()
Received:
2023-08-08
Online:
2024-01-26
Published:
2024-02-06
Contact:
FANG Jun
E-mail:13936685732@163.com;fangjun@iga.ac.cn
LIN Xin-yan, ZHANG Chuan-zhong, DAI Bing, WANG Xin-heng, LIU Jian-feng, WEN Li, XU Xing-jian, FANG Jun. Advances in Genetic and Molecular Mechanisms of Pre-harvest Sprouting in Rice[J]. Biotechnology Bulletin, 2024, 40(1): 24-31.
Fig. 1 Working model for the hormone-mediated transcriptional module in the regulation of rice seed dormancy and germination. Dashed lines indicate indirect or multistep regulation; arrowheads indicate positive regulation; and flat-ended lines indicate negative regulation. ABA: Abscisic acid; GA: gibberellin; JA: jasmonic acid; PYR/PYL/RCAR: pyrabactin resistance/pyrabactin-like/regulatory components of ABA receptors; PP2C: protein phosphatase 2C; SnRK2: SNF1-related protein kinase2; bZIP72: bZIP transcription factor; WRKY: WRKY transcription factor; XERICO: a RING-H2 zinc finger E3 ubiquitin ligase; GAMYB: GA regulated MYB transcriptional regulator; DELLA: DELLA protein; MFT: MOTHER OF FT AND TF1; DOG1: DELAY OF GERMINATION 1; ABI4: ABA INSENSITIVE 4;ABI5: ABA INSENSITIVE 5; ABI3: ABA INSENSITIVE 3; VP1: VIVIPAROUS 1; BR: brassinosteroid; BRI1: BR-insensitive 1; BZR1: brassinazole-resistant 1; RAmy3D: alpha-amylase isozyme 3D. RAmy1A: alpha-amylase 1A
[1] | 张琪, 贾俊婷, 张爱霞, 等. 水稻穗发芽研究进展[J]. 广东农业科学, 2022, 49(11): 128-137. |
Zhang Q, Jia JT, Zhang AX, et al. Research progress in pre-harvest sprouting of rice[J]. Guangdong Agric Sci, 2022, 49(11): 128-137. | |
[2] | 杨浚, 陆建飞, 俞炳杲, 等. 水稻穗发芽与籽粒内可溶性糖和α-淀粉酶活性的品种差异[J]. 南京农业大学学报, 1991, 14(1): 17-21. |
Yang J, Lu JF, Yu BG, et al. Soluble sugar level and alpha-amylase activity in grains of some rice varieties with distinguishable viviparity during grain developing[J]. J Nanjing Agric Univ, 1991, 14(1): 17-21. | |
[3] | 王娟, 袁俊, 洪彬, 等. 杂交稻制种过程中穗发芽生理生化特性的分析[J]. 分子植物育种, 2019, 17(19): 6469-6474. |
Wang J, Yuan J, Hong B, et al. Study on physiological and biochemical characteristics of PHS in hybrid rice seed production[J]. Mol Plant Breed, 2019, 17(19): 6469-6474. | |
[4] |
Hu QJ, Lin C, Guan YJ, et al. Inhibitory effect of eugenol on seed germination and pre-harvest sprouting of hybrid rice(Oryza sativa L.)[J]. Sci Rep, 2017, 7(1): 5295.
doi: 10.1038/s41598-017-04104-x |
[5] | 江玲, 万建民. 植物激素ABA和GA调控种子休眠和萌发的研究进展[J]. 江苏农业学报, 2007, 23(4): 360-365. |
Jiang L, Wan JM. Advances in seed dormancy and germination regulated by plant hormones ABA and GA[J]. Jiangsu J Agric Sci, 2007, 23(4): 360-365. | |
[6] |
Fang J, Chu CC. Abscisic acid and the pre-harvest sprouting in cereals[J]. Plant Signal Behav, 2008, 3(12): 1046-1048.
doi: 10.4161/psb.3.12.6606 pmid: 19513237 |
[7] |
Chen Y, Xiang ZP, Liu M, et al. ABA biosynthesis gene OsNCED3 contributes to preharvest sprouting resistance and grain development in rice[J]. Plant Cell Environ, 2023, 46(4): 1384-1401.
doi: 10.1111/pce.14480 URL |
[8] |
Wang YF, Hou YX, Qiu JH, et al. Abscisic acid promotes jasmonic acid biosynthesis via a ‘SAPK10-bZIP72-AOC’ pathway to synergistically inhibit seed germination in rice(Oryza sativa)[J]. New Phytol, 2020, 228(4): 1336-1353.
doi: 10.1111/nph.v228.4 URL |
[9] |
Wang X, Zou BH, Shao QL, et al. Natural variation reveals that OsSAP16 controls low-temperature germination in rice[J]. J Exp Bot, 2018, 69(3): 413-421.
doi: 10.1093/jxb/erx413 pmid: 29237030 |
[10] |
Yoshida H, Hirano K, Yano K, et al. Genome-wide association study identifies a gene responsible for temperature-dependent rice germination[J]. Nat Commun, 2022, 13(1): 5665.
doi: 10.1038/s41467-022-33318-5 pmid: 36175401 |
[11] | 袁仁长. 防止水稻制种穗发芽的几项措施[J]. 种子世界, 1986(6): 17. |
Yuan RC. Several measures to prevent panicle germination in rice seed production[J]. Seed World, 1986(6): 17. | |
[12] |
董袁袁, 徐恒, 张华, 等. 水稻种子成熟后期高湿环境下种子休眠相关基因的表达[J]. 浙江农业学报, 2022, 34(6): 1103-1113.
doi: 10.3969/j.issn.1004-1524.2022.06.01 |
Dong YY, Xu H, Zhang H, et al. Dynamic profile of genes related to seed dormancy under high humidity condition during late stage of rice grain filling[J]. Acta Agric Zhejiangensis, 2022, 34(6): 1103-1113.
doi: 10.3969/j.issn.1004-1524.2022.06.01 |
|
[13] |
Li W, Xu L, Bai XF, et al. Quantitative trait loci for seed dormancy in rice[J]. Euphytica, 2011, 178(3): 427-435.
doi: 10.1007/s10681-010-0327-4 URL |
[14] | 沈又佳, 刘世家, 吴兆苏. 杂种小麦抗穗发芽性的遗传研究[J]. 南京农业大学学报, 1996, 19(2): 1-5. |
Shen YJ, Liu SJ, Wu ZS. A genetic study on pre-harvest sprouting in hybyid wheat[J]. J Nanjing Agric Univ, 1996, 19(2): 1-5. | |
[15] |
Dong YJ, Tsuzuki E, Kamiunten H, et al. Identification of quantitative trait loci associated with pre-harvest sprouting resistance in rice(Oryza sativa L.)[J]. Field Crops Res, 2003, 81(2/3): 133-139.
doi: 10.1016/S0378-4290(02)00217-4 URL |
[16] | 陈海生, 陶龙兴, 王熹, 等. 水稻穗芽相关性状的QTL定位[J]. 中国水稻科学, 2006, 20(3): 253-258. |
Chen HS, Tao LX, Wang X, et al. Identification of QTL associated with pre-harvest sprouting traits in rice[J]. Chin J Rice Sci, 2006, 20(3): 253-258. | |
[17] |
Gao FY, Ren GJ, Lu XJ, et al. QTL analysis for resistance to preharvest sprouting in rice(Oryza sativa)[J]. Plant Breed, 2008, 127(3): 268-273.
doi: 10.1111/pbr.2008.127.issue-3 URL |
[18] |
Hori K, Sugimoto K, Nonoue Y, et al. Detection of quantitative trait loci controlling pre-harvest sprouting resistance by using backcrossed populations of japonica rice cultivars[J]. Theor Appl Genet, 2010, 120(8): 1547-1557.
doi: 10.1007/s00122-010-1275-z pmid: 20145904 |
[19] | 杨锟, 尚菲, 陈露露, 等. 水稻穗发芽性状的QTL定位[J]. 扬州大学学报: 农业与生命科学版, 2019, 40(3): 16-21. |
Yang K, Shang F, Chen LL, et al. QTL mapping for pre-harvest sprouting traits in rice[J]. J Yangzhou Univ Agric Life Sci Ed, 2019, 40(3): 16-21. | |
[20] |
Cheon KS, Won YJ, Jeong YM, et al. QTL mapping for pre-harvest sprouting resistance in japonica rice varieties utilizing genome re-sequencing[J]. Mol Genet Genomics, 2020, 295(5): 1129-1140.
doi: 10.1007/s00438-020-01688-4 |
[21] |
Wang Q, Lin QB, Wu T, et al. OsDOG1L-3 regulates seed dormancy through the abscisic acid pathway in rice[J]. Plant Sci, 2020, 298: 110570.
doi: 10.1016/j.plantsci.2020.110570 URL |
[22] |
Wang J, Deng QW, Li YH, et al. Transcription factors Rc and OsVP 1 coordinately regulate preharvest sprouting tolerance in red pericarp rice[J]. J Agric Food Chem, 2020, 68(50): 14748-14757.
doi: 10.1021/acs.jafc.0c04748 URL |
[23] |
Chen WQ, Wang W, Lyu YS, et al. OsVP1 activates Sdr4 expression to control rice seed dormancy via the ABA signaling pathway[J]. Crop J, 2021, 9(1): 68-78.
doi: 10.1016/j.cj.2020.06.005 URL |
[24] |
Zhao B, Zhang H, Chen TX, et al. Sdr4 dominates pre-harvest sprouting and facilitates adaptation to local climatic condition in Asian cultivated rice[J]. J Integr Plant Biol, 2022, 64(6): 1246-1263.
doi: 10.1111/jipb.v64.6 URL |
[25] |
Du L, Xu F, Fang J, et al. Endosperm sugar accumulation caused by mutation of PHS8/ISA1 leads to pre-harvest sprouting in rice[J]. Plant J, 2018, 95(3): 545-556.
doi: 10.1111/tpj.2018.95.issue-3 URL |
[26] |
Fang J, Chai CL, Qian Q, et al. Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice[J]. Plant J, 2008, 54(2): 177-189.
doi: 10.1111/tpj.2008.54.issue-2 URL |
[27] |
Xu F, Tang JY, Gao SP, et al. Control of rice pre-harvest sprouting by glutaredoxin-mediated abscisic acid signaling[J]. Plant J, 2019, 100(5): 1036-1051.
doi: 10.1111/tpj.v100.5 URL |
[28] |
Xu F, Tang JY, Wang SX, et al. Antagonistic control of seed dormancy in rice by two bHLH transcription factors[J]. Nat Genet, 2022, 54(12): 1972-1982.
doi: 10.1038/s41588-022-01240-7 pmid: 36471073 |
[29] |
Fu K, Song WH, Chen C, et al. Improving pre-harvest sprouting resistance in rice by editing OsABA8ox using CRISPR/Cas9[J]. Plant Cell Rep, 2022, 41(10): 2107-2110.
doi: 10.1007/s00299-022-02917-3 pmid: 35976402 |
[30] |
Zhou CL, Lin QB, Lan J, et al. WRKY transcription factor OsWRKY29 represses seed dormancy in rice by weakening abscisic acid response[J]. Front Plant Sci, 2020, 11: 691.
doi: 10.3389/fpls.2020.00691 URL |
[31] |
Jin J, Xiong LL, Gray JE, et al. Two awn-development-related peptides, GAD1 and OsEPFL2, promote seed dispersal and germination in rice[J]. Mol Plant, 2023, 16(3): 485-488.
doi: 10.1016/j.molp.2022.12.011 URL |
[32] |
Gubler F, Millar AA, Jacobsen JV. Dormancy release, ABA and pre-harvest sprouting[J]. Curr Opin Plant Biol, 2005, 8(2): 183-187.
doi: 10.1016/j.pbi.2005.01.011 pmid: 15752999 |
[33] |
Tuan PA, Kumar R, Rehal PK, et al. Molecular mechanisms underlying abscisic acid/gibberellin balance in the control of seed dormancy and germination in cereals[J]. Front Plant Sci, 2018, 9: 668.
doi: 10.3389/fpls.2018.00668 pmid: 29875780 |
[34] |
Yaish MW, El-Kereamy A, Zhu T, et al. The APETALA-2-like transcription factor OsAP2-39 controls key interactions between abscisic acid and gibberellin i n rice[J]. PLoS Genet, 2010, 6(9): e1001098.
doi: 10.1371/journal.pgen.1001098 URL |
[35] |
Kobayashi Y, Murata M, Minami H, et al. Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors[J]. Plant J, 2005, 44(6): 939-949.
doi: 10.1111/j.1365-313X.2005.02583.x pmid: 16359387 |
[36] |
Kobayashi Y, Yamamoto S, Minami H, et al. Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid[J]. Plant Cell, 2004, 16(5): 1163-1177.
doi: 10.1105/tpc.019943 pmid: 15084714 |
[37] |
Xiong M, Yu JW, Wang JD, et al. Brassinosteroids regulate rice seed germination through the BZR1-RAmy3D transcriptional module[J]. Plant Physiol, 2022, 189(1): 402-418.
doi: 10.1093/plphys/kiac043 pmid: 35139229 |
[1] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[2] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[3] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[4] | LI Yu, LI Su-zhen, CHEN Ru-mei, LU Hai-qiang. Advances in the Regulation of Iron Homeostasis by bHLH Transcription Factors in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 26-36. |
[5] | LIANG Cheng-gang, WANG Yan, LI Tian, OHSUGI Ryu, AOKI Naohiro. Effect of SP1 on Panicle Architecture by Regulating Carbohydrate Remobilization [J]. Biotechnology Bulletin, 2023, 39(5): 152-159. |
[6] | ZHOU Ding-ding, LI Hui-hu, TANG Xing-yong, YU Fa-xin, KONG Dan-yu, LIU Yi. Research Progress in the Biosynthesis and Regulation of Glycyrrhizic Acid and Liquiritin [J]. Biotechnology Bulletin, 2023, 39(5): 44-53. |
[7] | YANG Mao, LIN Yu-feng, DAI Yang-shuo, PAN Su-jun, PENG Wei-ye, YAN Ming-xiong, LI Wei, WANG Bing, DAI Liang-ying. OsDIS1 Negatively Regulates Rice Drought Tolerance Through Antioxidant Pathways [J]. Biotechnology Bulletin, 2023, 39(2): 88-95. |
[8] | JIANG Min-xuan, LI Kang, LUO Liang, LIU Jian-xiang, LU Hai-ping. Advances on the Expressions of Foreign Proteins in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 110-122. |
[9] | JIANG Nan, SHI Yang, ZHAO Zhi-hui, LI Bin, ZHAO Yi-hui, YANG Jun-biao, YAN Jia-ming, JIN Yu-fan, CHEN Ji, HUANG Jin. Expression and Functional Analysis of OsPT1 Gene in Rice Under Cadmium Stress [J]. Biotechnology Bulletin, 2023, 39(1): 166-174. |
[10] | CHEN Guang, LI Jia, DU Rui-ying, WANG Xu. Identification and Gene Functional Analysis of Salinity-hypersensitive Mutant ss2 in Rice [J]. Biotechnology Bulletin, 2022, 38(9): 158-166. |
[11] | GAO Xiao-rong, DING Yao, LV Jun. Effects of Pseudomonas sp. PR3,a Pyrene-degrading Bacterium with Plant Growth-promoting Properties,on Rice Growth Under Pyrene Stress [J]. Biotechnology Bulletin, 2022, 38(9): 226-236. |
[12] | HUANG Jing, ZHU Liang, XUE Peng-bo, FU Qiang. Research on Mechanism and QTL Mapping Associated with Cadmium Accumulation in Rice Leaves and Grains [J]. Biotechnology Bulletin, 2022, 38(8): 118-126. |
[13] | WEI Xin-xin, LAN Hai-yan. Advances in the Regulation of Plant MYB Transcription Factors in Secondary Metabolism and Stress Response [J]. Biotechnology Bulletin, 2022, 38(8): 12-23. |
[14] | CHEN Guang, LI Jia, DU Rui-ying, WANG Xu. pOsHAK1:OsFLN2 Expression Enhances the Drought Tolerance by Altering Sugar Metabolism in Rice [J]. Biotechnology Bulletin, 2022, 38(8): 92-100. |
[15] | LI Bai, CAI Zhi-jun, WANG Lei, CHEN Jie, CAO Kui-rong, LI Jun, CHONG Gao-jun. Development and Application of the Combinatorial Marker for the Rice Blast Resistance Gene Pigm [J]. Biotechnology Bulletin, 2022, 38(7): 153-159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||