Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (4): 271-277.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1057
Previous Articles Next Articles
MAO Li-jie1,2,3(), LIANG Xiao2,3, LIU Ying2,3, WU Chun-ling2,3, HAN Xiao-yan1, CHEN Qing2,3()
Received:
2023-11-10
Online:
2024-04-26
Published:
2024-04-30
Contact:
CHEN Qing
E-mail:maolijie9@163.com;chqingztq@163.com
MAO Li-jie, LIANG Xiao, LIU Ying, WU Chun-ling, HAN Xiao-yan, CHEN Qing. Mechanism of CMV Intervention in Peach Aphid Population Growth by Influencing the Expression of Effector MpC002[J]. Biotechnology Bulletin, 2024, 40(4): 271-277.
Fig. 1 CMV content in M. persicae after fed on CMV-infested pepper at different time A: Standard curve of CMV quantitative detection; B: the CMV copies in M. persicae at different times, data indicate mean value ± SE; *, ** and ns indicate significant(P<0.05), extremely significant difference(P<0.01)and no significant difference differences in CMV copy number within the same feeding time point, respectively. The same below
Fig. 2 Relative expressions of the effector MpC002 in M. persicae after feeding on CMV-infested and untreated pepper A: The transcription of MpC002 after feeding on CMV- infested pepper. B: The transcription of MpC002 after feeding on untreated pepper
Fig. 4 Influence on M. persicae reproduction and lifespan after feeding on CMV-infested and untreated peppers A: Average production period per female; B: average total production per female; C: average daily production; D: average lifespan of adult aphid
处理 Treatment | 净增殖率R0 Net reproduction rate(R0) | 平均世代周期T Mean generation time(T)/d | 内禀增长率rm Intrinsic rate of increase(rm)/(d-1) | 周限增长率λ Finite rate of increase(λ)/(d-1) | 种群加倍时间Dt Population doubling time(Dt)/d |
---|---|---|---|---|---|
未处理辣椒 Untreated peppers | 39.73±2.08** | 12.00±0.24 | 0.31±0.01** | 1.36±0.01** | 2.30±0.06 |
CMV感染辣椒 CMV-infested peppers | 16.87±0.98 | 13.02±0.40* | 0.21±0.00 | 1.24±0.01 | 3.26±0.07** |
Table 1 Life table parameters of aphids after feeding on CMV-infested and untreated peppers
处理 Treatment | 净增殖率R0 Net reproduction rate(R0) | 平均世代周期T Mean generation time(T)/d | 内禀增长率rm Intrinsic rate of increase(rm)/(d-1) | 周限增长率λ Finite rate of increase(λ)/(d-1) | 种群加倍时间Dt Population doubling time(Dt)/d |
---|---|---|---|---|---|
未处理辣椒 Untreated peppers | 39.73±2.08** | 12.00±0.24 | 0.31±0.01** | 1.36±0.01** | 2.30±0.06 |
CMV感染辣椒 CMV-infested peppers | 16.87±0.98 | 13.02±0.40* | 0.21±0.00 | 1.24±0.01 | 3.26±0.07** |
[1] | Ali MY, Naseem T, Arshad M, et al. Host-plant variations affect the biotic potential, survival, and population projection of Myzus persicae(Hemiptera: Aphididae)[J]. Insects, 2021, 12(5): 375. |
[2] |
Umina PA, Bass C, van Rooyen A, et al. Spirotetramat resistance in Myzus persicae(Sulzer)(Hemiptera: Aphididae)and its association with the presence of the A2666V mutation[J]. Pest Manag Sci, 2022, 78(11): 4822-4831.
doi: 10.1002/ps.7103 pmid: 35900771 |
[3] | Zhan X, Liu Y, Liang X, et al. Methyl jasmonate-treated pepper(Capsicum annuum L.) depresses performance and alters activities of protective, detoxification and digestive enzymes of green peach Aphid[Myzus Persicae(sulzer)](Hemiptera: Aphididae)[J]. J Insect Sci, 2022, 22(6): 11. |
[4] | 韦治艳, 戴仁怀, 杨洪, 等. 棉蚜和桃蚜取食辣椒和茄子对其发育繁殖的影响[J]. 中国植保导刊, 2022, 42(5): 10-14. |
Wei ZY, Dai RH, et al. Effects of feeding Capsicum annuum and So-lanum melongena on development and reproduction of Aphis gossypii and Myzus persicae[J]. China Plant Prot, 2022, 42(5): 10-14. | |
[5] |
陈青, 梁晓, 伍春玲, 等. 抗蚜高产辣椒品种鉴定评价[J]. 热带作物学报, 2022, 43(2): 285-293.
doi: 10.3969/j.issn.1000-2561.2022.02.008 |
Chen Q, Liang X, Wu CL, et al. Identification and evaluation of Capsicum cultivars resistant to Myzus persicae(sulzer)with high yield[J]. Chin J Trop Crops, 2022, 43(2): 285-293. | |
[6] |
van Bel AJE, Will T. Functional evaluation of proteins in watery and gel saliva of aphids[J]. Front Plant Sci, 2016, 7: 1840.
doi: 10.3389/fpls.2016.01840 pmid: 28018380 |
[7] | 尚哲明, 刘德广. 蚜虫唾液蛋白研究进展[J]. 昆虫学报, 2019, 62(12): 1435-1447. |
Shang ZM, Liu DG. Advances in aphid salivary protein research[J]. Acta Entomol Sin, 2019, 62(12): 1435-1447. | |
[8] | 张艳静, 李丹阳, 郭慧娟, 等. 蚜虫传播非持久性病毒的取食行为调控机制[J]. 植物保护学报, 2020, 47(5): 949-961. |
Zhang YJ, Li DY, Guo HJ, et al. The regulatory mechanism of aphid feeding behaviors associated with the transmission of nonpersistent viruses[J]. J Plant Prot, 2020, 47(5): 949-961. | |
[9] | Bos JIB, Prince D, Pitino M, et al. A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae(green peach aphid)[J]. PLoS Genet, 2010, 6(11): e1001216. |
[10] |
Mutti NS, Louis J, Pappan LK, et al. A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant[J]. Proc Natl Acad Sci USA, 2008, 105(29): 9965-9969.
doi: 10.1073/pnas.0708958105 URL |
[11] | 李雪峰, 范佳, 孙永伟, 等. 麦长管蚜唾液蛋白C002的基因克隆与RNA干扰研究[J]. 应用昆虫学报, 2014, 51(6): 1479-1487. |
Li XF, Fan J, Sun YW, et al. Cloning and RNA interference analysis of the Sitobion avenae salivary protein C002 gene[J]. Chin J Appl Entomol, 2014, 51(6): 1479-1487. | |
[12] |
Escudero-Martinez C, Rodriguez PA, Liu S, et al. An aphid effector promotes barley susceptibility through suppression of defence gene expression[J]. J Exp Bot, 2020, 71(9): 2796-2807.
doi: 10.1093/jxb/eraa043 pmid: 31989174 |
[13] |
Carolan JC, Fitzroy CIJ, Ashton PD, et al. The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterised by mass spectrometry[J]. Proteomics, 2009, 9(9): 2457-2467.
doi: 10.1002/pmic.200800692 pmid: 19402045 |
[14] |
Pitino M, Hogenhout SA. Aphid protein effectors promote aphid colonization in a plant species-specific manner[J]. Mol Plant Microbe Interact, 2013, 26(1): 130-139.
doi: 10.1094/MPMI-07-12-0172-FI URL |
[15] |
Coleman AD, Wouters RHM, Mugford ST, et al. Persistence and transgenerational effect of plant-mediated RNAi in aphids[J]. J Exp Bot, 2015, 66(2): 541-548.
doi: 10.1093/jxb/eru450 pmid: 25403918 |
[16] |
Liang Y, Gao XW. The cuticle protein gene MPCP4 of Myzus persicae(Homoptera: Aphididae)plays a critical role in cucumber mosaic virus acquisition[J]. J Econ Entomol, 2017, 110(3): 848-853.
doi: 10.1093/jee/tox025 pmid: 28334092 |
[17] |
Powell G, Pirone T, Hardie J. Aphid stylet activities during potyvirus acquisition from plants and an in vitro system that correlate with subsequent transmission[J]. Eur J Plant Pathol, 1995, 101(4): 411-420.
doi: 10.1007/BF01874855 URL |
[18] |
Thongmeearkom P, Ford R, Jedlinski H. Aphid transmission of maize dwarf mosaic virus strains[J]. Phytopathology, 1976, 66(3): 332-335.
doi: 10.1094/Phyto-66-332 URL |
[19] | Hong H, Wang CL, Huang Y, et al. Antiviral RISC mainly targets viral mRNA but not genomic RNA of tospovirus[J]. PLoS Pathog, 2021, 17(7): e1009757. |
[20] |
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method[J]. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[21] | 孙靖雯, 张海燕. 不同寄主植物对桃蚜生长繁殖的影响[J]. 黑龙江农业科学, 2020(1): 83-86. |
Sun JW, Zhang HY. Effects of different host plants on the growth and reproduction of peach aphid[J]. Heilongjiang Agric Sci, 2020(1): 83-86. | |
[22] |
Jayasinghe WH, Akhter MS, Nakahara K, et al. Effect of aphid biology and morphology on plant virus transmission[J]. Pest Manag Sci, 2022, 78(2): 416-427.
doi: 10.1002/ps.v78.2 URL |
[23] |
Ng JCK, Perry KL. Transmission of plant viruses by aphid vectors[J]. Mol Plant Pathol, 2004, 5(5): 505-511.
doi: 10.1111/j.1364-3703.2004.00240.x pmid: 20565624 |
[24] | Qi YH, He YJ, Wang X, et al. Physical contact transmission of Cucumber green mottle mosaic virus by Myzus persicae[J]. PLoS One, 2021, 16(6): e0252856. |
[25] |
Ray S, Casteel CL. Effector-mediated plant-virus-vector interactions[J]. Plant Cell, 2022, 34(5): 1514-1531.
doi: 10.1093/plcell/koac058 URL |
[26] |
Huang HJ, Ye ZX, Lu G, et al. Identification of salivary proteins in the whitefly Bemisia tabaci by transcriptomic and LC-MS/MS analyses[J]. Insect Sci, 2021, 28(5): 1369-1381.
doi: 10.1111/ins.v28.5 URL |
[27] | Guo HJ, Zhang YJ, Li BY, et al. Salivary carbonic anhydrase II in winged aphid morph facilitates plant infection by viruses[J]. Proc Natl Acad Sci USA, 2023, 120(14): e2222040120. |
[28] |
Huo Y, Zhao J, Meng XY, et al. Laodelphax striatellus saliva mucin enables the formation of stylet sheathes to facilitate its feeding and rice stripe virus transmission[J]. Pest Manag Sci, 2022, 78(8): 3498-3507.
doi: 10.1002/ps.v78.8 URL |
[29] |
Mugford ST, Barclay E, Drurey C, et al. An immuno-suppressive aphid saliva protein is delivered into the cytosol of plant mesophyll cells during feeding[J]. Mol Plant Microbe Interact, 2016, 29(11): 854-861.
doi: 10.1094/MPMI-08-16-0168-R URL |
[30] |
Mauck KE, Kenney J, Chesnais Q. Progress and challenges in identifying molecular mechanisms underlying host and vector manipulation by plant viruses[J]. Curr Opin Insect Sci, 2019, 33: 7-18.
doi: S2214-5745(18)30082-8 pmid: 31358199 |
[31] |
Li H, Liu XX, Liu XM, et al. Host plant infection by soybean mosaic virus reduces the fitness of its vector, Aphis glycines(Hemiptera: Aphididae)[J]. J Econ Entomol, 2018, 111(5): 2017-2023.
doi: 10.1093/jee/toy165 URL |
[32] |
陈茜, 刘英杰, 董勇浩, 等. 黄瓜花叶病毒侵染烟草对烟蚜生长发育、取食和选择行为的影响[J]. 中国农业科学, 2021, 54(8): 1673-1683.
doi: 10.3864/j.issn.0578-1752.2021.08.008 |
Chen Q, Liu YJ, Dong YH, et al. Effects of CMV-infected tobacco on the performance, feeding and host selection behavior of Myzus persicae[J]. Sci Agric Sin, 2021, 54(8): 1673-1683. | |
[33] |
Shi XB, Deng J, Zhang Z, et al. Initial ingestion of CMV-infected plants reduces subsequent aphid performance[J]. Arthropod Plant Interact, 2021, 15(2): 153-160.
doi: 10.1007/s11829-021-09804-w |
[34] |
Donaldson JR, Gratton C. Antagonistic effects of soybean viruses on soybean aphid performance[J]. Environ Entomol, 2007, 36(4): 918-925.
doi: 10.1603/0046-225x(2007)36[918:aeosvo]2.0.co;2 pmid: 17716484 |
[35] |
Blanc S, Drucker M, Uzest M. Localizing viruses in their insect vectors[J]. Annu Rev Phytopathol, 2014, 52: 403-425.
doi: 10.1146/annurev-phyto-102313-045920 pmid: 24996011 |
[1] | WANG Bin, YUAN Xiao, JIANG Yuan-yuan, WANG Yu-kun, XIAO Yan-hui, HE Jin-ming. Cloning of bHLH96 Gene and Its Roles in Regulating the Biosynthesis of Peppermint Terpenes [J]. Biotechnology Bulletin, 2024, 40(1): 281-293. |
[2] | ZHAO Zhi-xiang, WANG Dian-dong, ZHOU Ya-lin, WANG Pei, YAN Wan-rong, YAN Bei, LUO Lu-yun, ZHANG Zhuo. Control of Pepper Fusarium Wilt by Bacillus subtilis Ya-1 and Its Effect on Rhizosphere Fungal Microbial Community [J]. Biotechnology Bulletin, 2023, 39(9): 213-224. |
[3] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[4] | DU Qing-jie, ZHOU Lu-yao, YANG Si-zhen, ZHANG Jia-xin, CHEN Chun-lin, LI Juan-qi, LI Meng, ZHAO Shi-wen, XIAO Huai-juan, WANG Ji-qing. Overexpression of CaCP1 Enhances Salt Stress Sensibility in Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(2): 172-182. |
[5] | DUAN Min-jie, LI Yi-fei, YANG Xiao-miao, WANG Chun-ping, HUANG Qi-zhong, HUANG Ren-zhong, ZHANG Shi-cai. Identification of Zinc Finger Protein DnaJ-Like Gene Family in Capsicum annuum and Its Expression Analysis Responses to High Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(1): 187-198. |
[6] | HU Hua-ran, DU Lei, ZHANG Rui-hao, ZHONG Qiu-yue, LIU Fa-wan, GUI Min. Research Progress in the Adaptation of Hot Pepper(Capsicum annuum L.)to Abiotic Stress [J]. Biotechnology Bulletin, 2022, 38(12): 58-72. |
[7] | ZHOU Jing, HUANG Wen-mao, QIN Li-jun, HAN Li-zhen. Construction of Mixed Fermentation System of Four PGPR Strains and Evaluation of Its Promoting Effect [J]. Biotechnology Bulletin, 2021, 37(4): 116-126. |
[8] | YANG Mo, GAO Ting, LI Yan-jing, WEI Chong-yao, GAO Miao, MA Lian-ju. Isolation and Screening of Plant Growth-promoting Rhizobacteria in Pepper and Their Disease-resistant Growth-promoting Characteristics [J]. Biotechnology Bulletin, 2020, 36(5): 104-109. |
[9] | WANG Jiao, ZHANG Shui, ZHANG Jing-rou, SHAO Gui-fang, DENG Ming-hua. Cloning and Expression Analysis of CaCOX3 Gene from Pepper Cytoplasmic Male Sterile Line [J]. Biotechnology Bulletin, 2019, 35(4): 1-6. |
[10] | ZHANG Jing-rou, SHAO Gui-fang, WANG Jiao, ZHANG Shui, YANG Ting-yu, DENG Ming-hua. Clone and Expression Profile Analyses of the Gene CaATP9 in Pepper(Capsicum annuum L.)Male Sterility Line [J]. Biotechnology Bulletin, 2019, 35(11): 9-15. |
[11] | LIANG Xiao, WU Chun-ling, CHEN Qing. Inheritance Analysis of Resistance to Aphid(Myzus persicae)for Pepper Cultivar “Zhudachang” [J]. Biotechnology Bulletin, 2018, 34(2): 150-156. |
[12] | SHAO Gui-fang, ZHANG Fan, WANG Jiao, ZHAO Kai, MO Yun-rong, DENG Ming-hua. Research Progress on Male Sterility of Pepper [J]. Biotechnology Bulletin, 2017, 33(8): 7-13. |
[13] | ZHAO Zhong-juan, WEI Yan-li ,LI Ji-shun, WANG Yi-lian ,YANG He-tong. An Efficient Transformation of Salinity-resistant Peppermint Stem Mediated with Agrobacterium tumefaciens [J]. Biotechnology Bulletin, 2017, 33(7): 126-132. |
[14] | WEI Bing-qiang,ZHANG Miao,WANG Lan-lan, CHEN Ling-zhi, ZHANG Ru, HOU Dong,ZHANG Jian-nong. Research Progress on Cytoplasmic Male Sterility and Its Restorer of Fertility in Pepper [J]. Biotechnology Bulletin, 2016, 32(4): 1-5. |
[15] | ZHENG Jing-yuan, LIU Feng, ZHU Chun-hui. Isolation and Induced Expression of Ethylene Transcription Factor Gene CaERF18 from Capscium annuumm [J]. Biotechnology Bulletin, 2016, 32(3): 87-92. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||