Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (11): 214-226.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0115
Previous Articles Next Articles
CHEN Zhi-hua1(), QIAO Zhen-sheng1, LI Jia-qi1, ZHANG Xiao-lin1, MA Shao-jie1, HE Cheng-zhong1,2, ZONG Dan1,2()
Received:
2024-01-31
Online:
2024-11-26
Published:
2024-12-19
Contact:
ZONG Dan
E-mail:chzhhua1228@163.com;skyzd907@swfu.edu.cn
CHEN Zhi-hua, QIAO Zhen-sheng, LI Jia-qi, ZHANG Xiao-lin, MA Shao-jie, HE Cheng-zhong, ZONG Dan. Genome-wide Identification and Analysis of the TCP Gene Family in Populus yunnanensis[J]. Biotechnology Bulletin, 2024, 40(11): 214-226.
基因名称Gene name | 上游引物Forward primer(5'-3') | 下游引物Reverse primer(5'-3') |
---|---|---|
PyTCP12 | TGGCCGGTGTTTCTACTGAC | GCTGGTTCAAGCAACTAGGG |
PyTCP18 | AATCGAAGGCCGGGATCAAG | TCCCCGTTAGTCTCAGGTGT |
PyTCP20 | CCTCTGAAGTGGGACGTGAC | GGGCTTTCTTCAACATGGGC |
PyTCP24 | TAACACGGCTCAAGGACCAA | GGGGGAGCCACTGGATAGTT |
PyTCP32 | GATCTGCAAGACAAGCTACGC | TTCGGACAGCACTTCACACT |
PyTCP35 | CCATTGAAATCGCGCGTAAGT | GGTCCCCACTTTCGGATACA |
PyHIS | TTTAAGACTGATCTGCGTTTCC | GAACAGCCCAACAAGGTATG |
Table 1 Primers used for real-time fluorescence quantitative PCR
基因名称Gene name | 上游引物Forward primer(5'-3') | 下游引物Reverse primer(5'-3') |
---|---|---|
PyTCP12 | TGGCCGGTGTTTCTACTGAC | GCTGGTTCAAGCAACTAGGG |
PyTCP18 | AATCGAAGGCCGGGATCAAG | TCCCCGTTAGTCTCAGGTGT |
PyTCP20 | CCTCTGAAGTGGGACGTGAC | GGGCTTTCTTCAACATGGGC |
PyTCP24 | TAACACGGCTCAAGGACCAA | GGGGGAGCCACTGGATAGTT |
PyTCP32 | GATCTGCAAGACAAGCTACGC | TTCGGACAGCACTTCACACT |
PyTCP35 | CCATTGAAATCGCGCGTAAGT | GGTCCCCACTTTCGGATACA |
PyHIS | TTTAAGACTGATCTGCGTTTCC | GAACAGCCCAACAAGGTATG |
Fig. 3 Chromosomal position of TCP genes in P. yunnanensis The leftmost scales indicate the chromosome length. Chr01-Chr19 indicate the names of 19 chromosomes of P. yunnanensis
Fig. 5 Synteny analysis of TCP gene family in P. yunnanensis The genes connected by red lines indicate that TCPs are homologous among the PyTCPs, and the genes connected by gray lines indicate other homologous genes
Fig. 6 Collinearity analysis of TCP gene family among P. yunnanensis, P. trichocarpa and A. thaliana Chr refers to chromosome-scale scaffolds. The putative collinear genes in P. yunnanensis and the other two species are marked in gray, while the syntonic TCP gene pairs are marked in blue
氨基酸Amino acid | 密码子Codon | 数量Amount | 相对同义密码子使用度 Relative synonymous codon usage | 氨基酸 Amino acid | 密码子Codon | 数量Amount | 相对同义密码子使用度 Relative synonymous codon usage | |
---|---|---|---|---|---|---|---|---|
Phe 苯丙氨酸 | UUU* | 316 | 1.27 | Gly 甘氨酸 | GGU* | 357 | 1.30 | |
UUC | 183 | 0.73 | GGC | 218 | 0.79 | |||
Leu 亮氨酸 | UUA | 234 | 1.41 | GGA | 275 | 1.00 | ||
UUG* | 242 | 1.45 | GGG | 252 | 0.91 | |||
CUU | 210 | 1.26 | Pro 脯氨酸 | CCU* | 322 | 1.31 | ||
CUC | 130 | 0.78 | CCC | 148 | 0.60 | |||
CUA | 97 | 0.58 | CCA | 401 | 1.64 | |||
CUG | 85 | 0.51 | CCG | 109 | 0.44 | |||
Ile 异亮氨酸 | AUU* | 303 | 1.53 | Thr 苏氨酸 | ACU* | 334 | 1.41 | |
AUC | 150 | 0.76 | ACC | 203 | 0.86 | |||
AUA | 140 | 0.71 | ACA* | 349 | 1.47 | |||
Met 甲硫氨酸 | AUG | 372 | 1.00 | ACG | 62 | 0.26 | ||
Val 缬氨酸 | GUU* | 253 | 1.70 | Ala 丙氨酸 | GCU* | 427 | 1.66 | |
GUC | 91 | 0.61 | GCC | 163 | 0.63 | |||
GUA | 102 | 0.69 | GCA* | 352 | 1.37 | |||
GUG | 149 | 1.00 | GCG | 88 | 0.34 | |||
Tyr 酪氨酸 | UAU* | 113 | 1.32 | Ter 终止密码子 | UAA | 7 | 0.55 | |
UAC | 58 | 0.68 | UAG | 7 | 0.55 | |||
Cys 半胱氨酸 | UGU* | 60 | 1.15 | UGA | 24 | 1.89 | ||
UGC | 44 | 0.85 | Trp 色氨酸 | UGG | 133 | 1.00 | ||
His 组氨酸 | CAU | 273 | 1.15 | Arg 精氨酸 | CGU | 89 | 0.70 | |
CAC | 203 | 0.85 | CGC | 68 | 0.54 | |||
Gln 谷氨酰胺 | CAA* | 560 | 1.23 | CGA | 81 | 0.64 | ||
CAG | 352 | 0.77 | CGG | 68 | 0.54 | |||
Asn 天冬酰胺 | AAU | 486 | 1.17 | AGA | 253 | 2.00 | ||
AAC | 347 | 0.83 | AGG* | 199 | 1.58 | |||
Lys 赖氨酸 | AAA* | 318 | 1.08 | Ser 丝氨酸 | AGU* | 305 | 1.06 | |
AAG | 269 | 0.92 | AGC | 251 | 0.87 | |||
Asp 天冬氨酸 | GAU* | 415 | 1.30 | UCU* | 452 | 1.57 | ||
GAC | 224 | 0.70 | UCC | 202 | 0.70 | |||
Glu 谷氨酸 | GAA* | 394 | 1.13 | UCA* | 414 | 1.43 | ||
GAG | 302 | 0.87 | UCG | 108 | 0.37 |
Table 2 Relative codon usage of the TCP gene family in P. yunnanensis
氨基酸Amino acid | 密码子Codon | 数量Amount | 相对同义密码子使用度 Relative synonymous codon usage | 氨基酸 Amino acid | 密码子Codon | 数量Amount | 相对同义密码子使用度 Relative synonymous codon usage | |
---|---|---|---|---|---|---|---|---|
Phe 苯丙氨酸 | UUU* | 316 | 1.27 | Gly 甘氨酸 | GGU* | 357 | 1.30 | |
UUC | 183 | 0.73 | GGC | 218 | 0.79 | |||
Leu 亮氨酸 | UUA | 234 | 1.41 | GGA | 275 | 1.00 | ||
UUG* | 242 | 1.45 | GGG | 252 | 0.91 | |||
CUU | 210 | 1.26 | Pro 脯氨酸 | CCU* | 322 | 1.31 | ||
CUC | 130 | 0.78 | CCC | 148 | 0.60 | |||
CUA | 97 | 0.58 | CCA | 401 | 1.64 | |||
CUG | 85 | 0.51 | CCG | 109 | 0.44 | |||
Ile 异亮氨酸 | AUU* | 303 | 1.53 | Thr 苏氨酸 | ACU* | 334 | 1.41 | |
AUC | 150 | 0.76 | ACC | 203 | 0.86 | |||
AUA | 140 | 0.71 | ACA* | 349 | 1.47 | |||
Met 甲硫氨酸 | AUG | 372 | 1.00 | ACG | 62 | 0.26 | ||
Val 缬氨酸 | GUU* | 253 | 1.70 | Ala 丙氨酸 | GCU* | 427 | 1.66 | |
GUC | 91 | 0.61 | GCC | 163 | 0.63 | |||
GUA | 102 | 0.69 | GCA* | 352 | 1.37 | |||
GUG | 149 | 1.00 | GCG | 88 | 0.34 | |||
Tyr 酪氨酸 | UAU* | 113 | 1.32 | Ter 终止密码子 | UAA | 7 | 0.55 | |
UAC | 58 | 0.68 | UAG | 7 | 0.55 | |||
Cys 半胱氨酸 | UGU* | 60 | 1.15 | UGA | 24 | 1.89 | ||
UGC | 44 | 0.85 | Trp 色氨酸 | UGG | 133 | 1.00 | ||
His 组氨酸 | CAU | 273 | 1.15 | Arg 精氨酸 | CGU | 89 | 0.70 | |
CAC | 203 | 0.85 | CGC | 68 | 0.54 | |||
Gln 谷氨酰胺 | CAA* | 560 | 1.23 | CGA | 81 | 0.64 | ||
CAG | 352 | 0.77 | CGG | 68 | 0.54 | |||
Asn 天冬酰胺 | AAU | 486 | 1.17 | AGA | 253 | 2.00 | ||
AAC | 347 | 0.83 | AGG* | 199 | 1.58 | |||
Lys 赖氨酸 | AAA* | 318 | 1.08 | Ser 丝氨酸 | AGU* | 305 | 1.06 | |
AAG | 269 | 0.92 | AGC | 251 | 0.87 | |||
Asp 天冬氨酸 | GAU* | 415 | 1.30 | UCU* | 452 | 1.57 | ||
GAC | 224 | 0.70 | UCC | 202 | 0.70 | |||
Glu 谷氨酸 | GAA* | 394 | 1.13 | UCA* | 414 | 1.43 | ||
GAG | 302 | 0.87 | UCG | 108 | 0.37 |
基因名称Gene name | CDS长度Length of CDS | CAI | CBI/% | Fop/% | ENc/% | GC/% | GC1/% | GC2/% | GC3/% |
---|---|---|---|---|---|---|---|---|---|
PyTCP1 | 909 | 0.169 | -12.4 | 36.2 | 45.29 | 44.8 | 49.50 | 43.23 | 41.58 |
PyTCP2 | 1 194 | 0.194 | -5.5 | 39.3 | 58.74 | 49.2 | 53.02 | 53.52 | 40.95 |
PyTCP3 | 963 | 0.182 | -7.5 | 38.7 | 43.67 | 45.5 | 55.76 | 48.60 | 32.09 |
PyTCP4 | 963 | 0.180 | -8.0 | 38.4 | 44.29 | 45.8 | 45.79 | 55.76 | 48.91 |
PyTCP5 | 1 239 | 0.211 | -3.0 | 42.0 | 56.06 | 49.7 | 56.90 | 47.46 | 44.55 |
PyTCP6 | 1 047 | 0.186 | -1.9 | 40.1 | 58.45 | 49.4 | 52.44 | 52.44 | 43.27 |
PyTCP7 | 1 002 | 0.191 | -1.6 | 41.0 | 56.36 | 48.9 | 53.59 | 53.59 | 39.52 |
PyTCP8 | 909 | 0.165 | -12.7 | 35.8 | 48.84 | 44.0 | 48.51 | 43.89 | 39.60 |
PyTCP9 | 1 188 | 0.196 | -1.8 | 42.2 | 53.49 | 46.2 | 48.74 | 48.99 | 40.66 |
PyTCP10 | 1 425 | 0.193 | -6.5 | 40.1 | 53.99 | 47.0 | 50.53 | 47.16 | 43.16 |
PyTCP11 | 1 413 | 0.191 | -7.2 | 39.8 | 54.20 | 47.2 | 50.74 | 47.77 | 43.10 |
PyTCP12 | 969 | 0.183 | -0.8 | 42.2 | 50.17 | 41.8 | 41.49 | 44.58 | 39.32 |
PyTCP13 | 1 098 | 0.171 | -16.6 | 32.2 | 47.83 | 42.6 | 47.27 | 49.50 | 34.43 |
PyTCP14 | 1 716 | 0.198 | -8.1 | 39.1 | 50.97 | 48.9 | 57.17 | 53.15 | 36.19 |
PyTCP15 | 816 | 0.180 | 3.9 | 44.8 | 47.26 | 52.0 | 58.46 | 57.35 | 40.07 |
PyTCP16 | 597 | 0.272 | 19.5 | 53.4 | 51.98 | 57.7 | 56.28 | 48.74 | 67.84 |
PyTCP17 | 813 | 0.183 | 3.3 | 44.2 | 46.04 | 50.4 | 58.67 | 56.09 | 36.16 |
PyTCP18 | 1 365 | 0.199 | -10.3 | 37.7 | 51.28 | 43.2 | 43.96 | 41.32 | 44.40 |
PyTCP19 | 555 | 0.216 | -8.0 | 37.6 | 52.63 | 45.5 | 51.89 | 45.95 | 38.38 |
PyTCP20 | 1 464 | 0.210 | -8.0 | 38.6 | 52.48 | 41.6 | 44.88 | 39.75 | 40.16 |
PyTCP21 | 1 152 | 0.187 | -4.2 | 41.1 | 57.00 | 46.8 | 50.52 | 47.92 | 41.93 |
PyTCP22 | 1 437 | 0.199 | -5.8 | 40.7 | 57.13 | 47.7 | 50.31 | 49.69 | 43.01 |
PyTCP23 | 1 233 | 0.221 | -1.7 | 42.5 | 60.03 | 50.1 | 56.93 | 48.91 | 44.28 |
PyTCP24 | 1 185 | 0.211 | -4.0 | 40.9 | 50.44 | 42.2 | 43.29 | 41.27 | 42.03 |
PyTCP25 | 1 104 | 0.219 | -4.7 | 40.4 | 44.90 | 44.0 | 53.26 | 50.00 | 28.53 |
PyTCP26 | 1 245 | 0.189 | -7.7 | 39.2 | 51.85 | 45.8 | 52.53 | 51.33 | 33.25 |
PyTCP27 | 1 248 | 0.189 | -7.5 | 39.2 | 52.61 | 46.3 | 52.88 | 51.44 | 34.13 |
PyTCP28 | 1 041 | 0.209 | -5.6 | 40.1 | 50.16 | 45.7 | 52.45 | 46.4 | 38.04 |
PyTCP29 | 1 194 | 0.192 | 2.6 | 42.5 | 57.21 | 49.5 | 52.26 | 53.27 | 42.96 |
PyTCP30 | 1 278 | 0.208 | -4.8 | 40.2 | 54.02 | 42.0 | 45.77 | 39.44 | 40.38 |
PyTCP31 | 1 077 | 0.151 | -16.7 | 32.0 | 52.85 | 41.2 | 45.40 | 44.57 | 33.15 |
PyTCP32 | 1 080 | 0.217 | -8.6 | 38.3 | 44.14 | 44.1 | 54.72 | 49.44 | 28.06 |
PyTCP33 | 969 | 0.175 | -10.3 | 37.4 | 44.70 | 44.4 | 53.56 | 48.30 | 30.96 |
PyTCP34 | 1 083 | 0.173 | -18.8 | 31.1 | 50.57 | 42.4 | 47.09 | 45.98 | 34.07 |
PyTCP35 | 1 125 | 0.214 | 2.4 | 44.2 | 56.07 | 43.0 | 43.47 | 42.93 | 42.40 |
PyTCP36 | 1 254 | 0.205 | -5.8 | 40.6 | 52.40 | 45.1 | 52.63 | 50.48 | 31.82 |
PyTCP37 | 1 197 | 0.205 | -6.4 | 40.2 | 53.22 | 45.5 | 54.64 | 49.37 | 32.08 |
PyTCP38 | 1 041 | 0.197 | -13.4 | 36.2 | 49.42 | 44.6 | 52.16 | 47.55 | 34.01 |
Table 3 Codon usage parameters of TCP gene family in P. yunnanensis
基因名称Gene name | CDS长度Length of CDS | CAI | CBI/% | Fop/% | ENc/% | GC/% | GC1/% | GC2/% | GC3/% |
---|---|---|---|---|---|---|---|---|---|
PyTCP1 | 909 | 0.169 | -12.4 | 36.2 | 45.29 | 44.8 | 49.50 | 43.23 | 41.58 |
PyTCP2 | 1 194 | 0.194 | -5.5 | 39.3 | 58.74 | 49.2 | 53.02 | 53.52 | 40.95 |
PyTCP3 | 963 | 0.182 | -7.5 | 38.7 | 43.67 | 45.5 | 55.76 | 48.60 | 32.09 |
PyTCP4 | 963 | 0.180 | -8.0 | 38.4 | 44.29 | 45.8 | 45.79 | 55.76 | 48.91 |
PyTCP5 | 1 239 | 0.211 | -3.0 | 42.0 | 56.06 | 49.7 | 56.90 | 47.46 | 44.55 |
PyTCP6 | 1 047 | 0.186 | -1.9 | 40.1 | 58.45 | 49.4 | 52.44 | 52.44 | 43.27 |
PyTCP7 | 1 002 | 0.191 | -1.6 | 41.0 | 56.36 | 48.9 | 53.59 | 53.59 | 39.52 |
PyTCP8 | 909 | 0.165 | -12.7 | 35.8 | 48.84 | 44.0 | 48.51 | 43.89 | 39.60 |
PyTCP9 | 1 188 | 0.196 | -1.8 | 42.2 | 53.49 | 46.2 | 48.74 | 48.99 | 40.66 |
PyTCP10 | 1 425 | 0.193 | -6.5 | 40.1 | 53.99 | 47.0 | 50.53 | 47.16 | 43.16 |
PyTCP11 | 1 413 | 0.191 | -7.2 | 39.8 | 54.20 | 47.2 | 50.74 | 47.77 | 43.10 |
PyTCP12 | 969 | 0.183 | -0.8 | 42.2 | 50.17 | 41.8 | 41.49 | 44.58 | 39.32 |
PyTCP13 | 1 098 | 0.171 | -16.6 | 32.2 | 47.83 | 42.6 | 47.27 | 49.50 | 34.43 |
PyTCP14 | 1 716 | 0.198 | -8.1 | 39.1 | 50.97 | 48.9 | 57.17 | 53.15 | 36.19 |
PyTCP15 | 816 | 0.180 | 3.9 | 44.8 | 47.26 | 52.0 | 58.46 | 57.35 | 40.07 |
PyTCP16 | 597 | 0.272 | 19.5 | 53.4 | 51.98 | 57.7 | 56.28 | 48.74 | 67.84 |
PyTCP17 | 813 | 0.183 | 3.3 | 44.2 | 46.04 | 50.4 | 58.67 | 56.09 | 36.16 |
PyTCP18 | 1 365 | 0.199 | -10.3 | 37.7 | 51.28 | 43.2 | 43.96 | 41.32 | 44.40 |
PyTCP19 | 555 | 0.216 | -8.0 | 37.6 | 52.63 | 45.5 | 51.89 | 45.95 | 38.38 |
PyTCP20 | 1 464 | 0.210 | -8.0 | 38.6 | 52.48 | 41.6 | 44.88 | 39.75 | 40.16 |
PyTCP21 | 1 152 | 0.187 | -4.2 | 41.1 | 57.00 | 46.8 | 50.52 | 47.92 | 41.93 |
PyTCP22 | 1 437 | 0.199 | -5.8 | 40.7 | 57.13 | 47.7 | 50.31 | 49.69 | 43.01 |
PyTCP23 | 1 233 | 0.221 | -1.7 | 42.5 | 60.03 | 50.1 | 56.93 | 48.91 | 44.28 |
PyTCP24 | 1 185 | 0.211 | -4.0 | 40.9 | 50.44 | 42.2 | 43.29 | 41.27 | 42.03 |
PyTCP25 | 1 104 | 0.219 | -4.7 | 40.4 | 44.90 | 44.0 | 53.26 | 50.00 | 28.53 |
PyTCP26 | 1 245 | 0.189 | -7.7 | 39.2 | 51.85 | 45.8 | 52.53 | 51.33 | 33.25 |
PyTCP27 | 1 248 | 0.189 | -7.5 | 39.2 | 52.61 | 46.3 | 52.88 | 51.44 | 34.13 |
PyTCP28 | 1 041 | 0.209 | -5.6 | 40.1 | 50.16 | 45.7 | 52.45 | 46.4 | 38.04 |
PyTCP29 | 1 194 | 0.192 | 2.6 | 42.5 | 57.21 | 49.5 | 52.26 | 53.27 | 42.96 |
PyTCP30 | 1 278 | 0.208 | -4.8 | 40.2 | 54.02 | 42.0 | 45.77 | 39.44 | 40.38 |
PyTCP31 | 1 077 | 0.151 | -16.7 | 32.0 | 52.85 | 41.2 | 45.40 | 44.57 | 33.15 |
PyTCP32 | 1 080 | 0.217 | -8.6 | 38.3 | 44.14 | 44.1 | 54.72 | 49.44 | 28.06 |
PyTCP33 | 969 | 0.175 | -10.3 | 37.4 | 44.70 | 44.4 | 53.56 | 48.30 | 30.96 |
PyTCP34 | 1 083 | 0.173 | -18.8 | 31.1 | 50.57 | 42.4 | 47.09 | 45.98 | 34.07 |
PyTCP35 | 1 125 | 0.214 | 2.4 | 44.2 | 56.07 | 43.0 | 43.47 | 42.93 | 42.40 |
PyTCP36 | 1 254 | 0.205 | -5.8 | 40.6 | 52.40 | 45.1 | 52.63 | 50.48 | 31.82 |
PyTCP37 | 1 197 | 0.205 | -6.4 | 40.2 | 53.22 | 45.5 | 54.64 | 49.37 | 32.08 |
PyTCP38 | 1 041 | 0.197 | -13.4 | 36.2 | 49.42 | 44.6 | 52.16 | 47.55 | 34.01 |
Fig. 7 Analysis of influencing factors of preference for the usage of codons in the TCP gene family in P. yunnanensis From left to right, ENC-plot, PR2-plot, and neutral plot analysis
Fig. 8 Analysis of the CYC/TB1 subfamily of the TCP gene family of P. yunnanensis via RT-PCR Different lowercase letters indicate significant difference at 0.05 level
[1] | Bowman JL, Eshed Y, Baum SF. Establishment of polarity in angiosperm lateral organs[J]. Trends Genet, 2002, 18(3): 134-141. |
[2] | Cubas P, Lauter N, Doebley J, et al. The TCP domain: a motif found in proteins regulating plant growth and development[J]. Plant J, 1999, 18(2): 215-222. |
[3] | Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize[J]. Nature, 1997, 386(6624): 485-488. |
[4] | Howarth DG, Donoghue MJ. Phylogenetic analysis of the “ECE”(CYC/TB1)clade reveals duplications predating the core eudicots[J]. Proc Natl Acad Sci USA, 2006, 103(24): 9101-9106. |
[5] | 周棋赢, 韩月华, 祝悦, 等. 茶树TCP家族的全基因组鉴定及其表达分析[J]. 园艺学报, 2019, 46(10): 2021-2036. |
Zhou QY, Han YH, Zhu Y, et al. Genome-wide identification, classification and expression analysis of TCP gene family in tea plant[J]. Acta Hortic Sin, 2019, 46(10): 2021-2036. | |
[6] | An JX, Guo ZX, Gou XP, et al. TCP1 positively regulates the expression of DWF4 in Arabidopsis thaliana[J]. Plant Signal Behav, 2011, 6(8): 1117-1118. |
[7] | 王景超. 植物TCP家族基因的研究进展[J]. 农业与技术, 2021, 41(18): 63-66. |
Wang JC. Research progress of TCP family genes in plants[J]. Agric Technol, 2021, 41(18): 63-66. | |
[8] | Yao X, Ma H, Wang J, et al. Genome-wide comparative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryza sativa[J]. J Integr Plant Biol, 2007, 49(6): 885-897. |
[9] | Wang S, Shen YR, Guo LY, et al. Innovation and emerging roles of Populus trichocarpa TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR transcription factors in abiotic stresses by whole-genome duplication[J]. Front Plant Sci, 2022, 13: 850064. |
[10] | 张路阳, 韩文龙, 徐晓雯, 等. 烟草TCP基因家族的鉴定及表达分析[J]. 生物技术通报, 2023, 39(6): 248-258. |
Zhang LY, Han WL, Xu XW, et al. Identification and expression analysis of the tobacco TCP gene family[J]. Biotechnol Bull, 2023, 39(6): 248-258. | |
[11] | 关紫微, 曹希雅, 张先文, 等. 水稻TCP家族的全基因组鉴定及表达分析[J]. 分子植物育种, 2022, 20(10): 3145-3156. |
Guan ZW, Cao XY, Zhang XW, et al. Genome-wide identification and expression analysis of TCP family in rice(Oryza sativa L.)[J]. Mol Plant Breed, 2022, 20(10): 3145-3156. | |
[12] | 李菲, 何小红, 张宇斌, 等. 番茄TCP转录因子家族的鉴定和生物信息学分析[J]. 分子植物育种, 2018, 16(21): 6899-6906. |
Li F, He XH, Zhang YB, et al. Identification and bioinformatics analysis of TCP transcription factor family in tomato[J]. Mol Plant Breed, 2018, 16(21): 6899-6906. | |
[13] | 张经博, 刘隋赟昊, 陈永坤, 等. 薰衣草TCP转录因子家族的鉴定和表达分析[J/OL]. 分子植物育种, 2022. http://kns.cnki.net/kcms/detail/46.1068.S.20220915.1855.033.html. |
Zhang JB, Liu SYH, Chen YK, et al. Genome-wide identification and expression analysis of TCP family in Lavandula angustifo-lia[J/OL]. Mol Plant Breed, 2022. http://kns.cnki.net/kcms/detail/46.1068.S.20220915.1855.033.html. | |
[14] | 刘俊, 李龙, 吴耀松, 等. 杜仲TCP转录因子鉴定及生物信息学分析[J]. 中草药, 2022, 53(12): 3755-3765. |
Liu J, Li L, Wu YS, et al. Identification and bioinformatics analysis of TCP transcription factors in Eucommia ulmoides[J]. Chin Tradit Herb Drugs, 2022, 53(12): 3755-3765. | |
[15] | Fan HM, Sun CH, Wen LZ, et al. CmTCP20 plays a key role in nitrate and auxin signaling-regulated lateral root development in Chrysanthemum[J]. Plant Cell Physiol, 2019, 60(7): 1581-1594. |
[16] | Li XY, Zhang GF, Liang YH, et al. TCP7 interacts with Nuclear Factor-Ys to promote flowering by directly regulating SOC1 in Arabidopsis[J]. Plant J, 2021, 108(5): 1493-1506. |
[17] | Han X, Yu H, Yuan RR, et al. Arabidopsis transcription factor TCP5 controls plant thermomorphogenesis by positively regulating PIF4 activity[J]. iScience, 2019, 15: 611-622. |
[18] | Palatnik JF, Allen E, Wu XL, et al. Control of leaf morphogenesis by microRNAs[J]. Nature, 2003, 425(6955): 257-263. |
[19] | 张雪莹, 尹一歌, 姜晶, 等. 参与番茄叶形发育的TCP转录因子的表达及生物信息分析[J]. 中国蔬菜, 2021(10): 45-56. |
Zhang XY, Yin YG, Jiang J, et al. Expression of SlTCPs transcription factors involved in tomato leaf shape development and bioinformatic analysis[J]. China Veg, 2021(10): 45-56. | |
[20] | Zhang X, Bao YL, Shan DQ, et al. Magnaporthe oryzae induces the expression of a microRNA to suppress the immune response in rice[J]. Plant Physiol, 2018, 177(1): 352-368. |
[21] | Ma XD, Ma JC, Fan D, et al. Genome-wide identification of TCP family transcription factors from Populus euphratica and their involvement in leaf shape regulation[J]. Sci Rep, 2016, 6: 32795. |
[22] | 苏甜, 张应华, 吕霞, 等. 植物侧枝发育的分子调控机理研究进展[J]. 植物生理学报, 2021, 57(8): 1609-1616. |
Su T, Zhang YH, Lü X, et al. Advances in molecular regulation mechanism of lateral branch development in plants[J]. Plant Physiol J, 2021, 57(8): 1609-1616. | |
[23] | Aguilar-Martínez JA, Poza-Carrión C, Cubas P. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds[J]. Plant Cell, 2007, 19(2): 458-472. |
[24] | Minakuchi K, Kameoka H, Yasuno N, et al. FINE CULM1(FC1)works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice[J]. Plant Cell Physiol, 2010, 51(7): 1127-1135. |
[25] | Moreno-Pachon NM, Mutimawurugo MC, Heynen E, et al. Role of Tulipa gesneriana TEOSINTE BRANCHED1(TgTB1)in the control of axillary bud outgrowth in bulbs[J]. Plant Reprod, 2018, 31(2): 145-157. |
[26] | Wang M, Le Moigne MA, Bertheloot J, et al. BRANCHED1: a key hub of shoot branching[J]. Front Plant Sci, 2019, 10: 76. |
[27] | 于雷, 何小帆, 周安佩, 等. 滇杨与毛白杨插穗内源激素含量的比较研究[J]. 云南农业大学学报: 自然科学, 2018, 33(4): 715-720. |
Yu L, He XF, Zhou AP, et al. Comparative study on the endogenous hormone contents in cuttings of Populus yunnanensis and P. tomentosa[J]. J Yunnan Agric Univ Nat Sci, 2018, 33(4): 715-720. | |
[28] | 何承忠, 车鹏燕, 周修涛, 等. 滇杨基因资源及其研究概况[J]. 西南林学院学报, 2010, 30(1): 83-88, 94. |
He CZ, Che PY, Zhou XT, et al. A survey of research progress on gene resources of Populus yunnanensis[J]. J Southwest For Univ, 2010, 30(1): 83-88, 94. | |
[29] | Chen CJ, Wu Y, Li JW, et al. TBtools-II: a “one for all, all for one” bioinformatics platform for biological big-data mining[J]. Mol Plant, 2023, 16(11): 1733-1742. |
[30] | 方辉, 曲俊杰, 孙嘉曼, 等. 香蕉全基因组NBS抗病基因密码子使用偏好性分析[J]. 分子植物育种, 2017, 15(3): 883-889. |
Fang H, Qu JJ, Sun JM, et al. The Codon usage bias of NBS disease resistance genes in whole genome of banana[J]. Mol Plant Breed, 2017, 15(3): 883-889. | |
[31] | 秦振芬, 孟祥霄, 陈伟强, 等. 工业大麻TCP基因家族的鉴定及表达分析[J]. 中草药, 2023, 54(23): 7806-7814. |
Qin ZF, Meng XX, Chen WQ, et al. Genome-wide identification and expression analysis of TCP gene family in Cannabis sativa[J]. Chin Tradit Herb Drugs, 2023, 54(23): 7806-7814. | |
[32] | 王景超, 张君, 齐云, 等. 玉米TCP家族基因的表达分析[J]. 玉米科学, 2022, 30(1): 63-68. |
Wang JC, Zhang J, Qi Y, et al. Expression analysis on TCP family genes of maize[J]. J Maize Sci, 2022, 30(1): 63-68. | |
[33] | 任明杰, 陆丹迎, 吴超, 等. 景宁木兰TCP家族鉴定及遮阴胁迫表达模式分析[J]. 热带亚热带植物学报, 2023, 31(5): 623-633. |
Ren MJ, Lu DY, Wu C, et al. Identification of TCP family in Magnolia sinostellata and expression patterns of TCPs under shading stress[J]. J Trop Subtrop Bot, 2023, 31(5): 623-633. | |
[34] | Wu Y, Zhang JB, Li CQ, et al. Genome-wide analysis of TCP transcription factor family in sunflower and identification of HaTCP1 involved in the regulation of shoot branching[J]. BMC Plant Biol, 2023, 23(1): 222. |
[35] | 王利军, 战吉成, 黄卫东. 水杨酸与植物抗逆性[J]. 植物生理学通讯, 2002, 38(6): 619-624. |
Wang LJ, Zhan JC, Huang WD. Salicylic acid and response to stress in plants[J]. Plant Physiol Commun, 2002, 38(6): 619-624. | |
[36] | 刘红娟, 刘洋, 刘琳. 脱落酸对植物抗逆性影响的研究进展[J]. 生物技术通报, 2008(6): 7-9. |
Liu HJ, Liu Y, Liu L. Progress of research on the influence of abscisic acid in plant resistance[J]. Biotechnol Bull, 2008(6): 7-9. | |
[37] | 郭旭, 张慧莹, 王铮, 等. 绿豆VrWOX基因家族鉴定及表达分析[J]. 生物工程学报, 2023, 39(2): 566-585. |
Guo X, Zhang HY, Wang Z, et al. Molecular characterization and transcriptional analysis of VrWOX genes in mungbean[Vigna radiate(L.) Wilczek][J]. Chin J Biotechnol, 2023, 39(2): 566-585. | |
[38] | Rameau C, Bertheloot J, Leduc N, et al. Multiple pathways regulate shoot branching[J]. Front Plant Sci, 2015, 5: 741. |
[1] | TIAN Chun-yan, LI Xu-juan, LI Chun-jia, MAO Jun, LIU Xin-long. Genome-wide Analysis of Codon Usage Bias in Saccharum Species and Its Phylogenetically Related Species Erianthus fulvus [J]. Biotechnology Bulletin, 2024, 40(3): 202-214. |
[2] | LI Chen-liang, CAI Xue-ying, YANG An-hui. Research Progress in the Chemical Components and Pharmacological Effects of Sarcodon imbricatus [J]. Biotechnology Bulletin, 2024, 40(11): 24-33. |
[3] | YIN Ming-hua, YU Huan-yuan, XIAO Xin-yi, WANG Yu-ting. Chloroplast Genomic Characterization and Phylogenetic Analysis of Colocasia esculenta L. Schoot var. cormosus cv. ‘Hongyayu’ from Jiangxi Yanshan [J]. Biotechnology Bulletin, 2023, 39(6): 233-247. |
[4] | MAO Ke-xin, WANG Hai-rong, AN Miao, LIU Teng-fei, WANG Shi-jin, LI Jian, LI Guo-tian. Identification of GRAS Gene Family and Expression Analysis Under Low Temperature Stress in Actinidia chinensis [J]. Biotechnology Bulletin, 2023, 39(11): 297-307. |
[5] | HAO Qing-qing, YAO Sheng, LIU Jia-he, CHEN Pei-zhen, ZHANG Meng-yang, JI Kong-shu. Cloning and Expression Analysis of NAC Transcription Factor PmNAC8 in Pinus massoniana [J]. Biotechnology Bulletin, 2022, 38(4): 202-216. |
[6] | WANG Yue, GAO Qing-hua, DONG Cong, LUO Tong-yang, WANG Qing-qing. Expression of Pyranose Oxidase with Optimized Codon in Pichia pastoris [J]. Biotechnology Bulletin, 2022, 38(4): 269-277. |
[7] | LI Nan-hai, SUN Zhuo, YANG Li-min. Effects of Phosphorus Level and Arbuscular Mycorrhizal Fungi on the Growth and Quality of Platycodon grandiflorum [J]. Biotechnology Bulletin, 2022, 38(1): 132-140. |
[8] | ZHENG Bo, WáNG Ning, HUO Yi-xin. Tránscriptionál ánd Tránslátionál Regulátions-oriented Screening ánd Engineering Strátegy for ámino ácid Overproducers [J]. Biotechnology Bulletin, 2020, 36(4): 34-40. |
[9] | LIN Mei-xuan, ZHOU Xiao-man, GUAN Feng, CUI Wen-jing. Heterologous Expression and Application of Phosphatidylinositol-specific Phospholipase C [J]. Biotechnology Bulletin, 2020, 36(1): 81-87. |
[10] | DONG Cong, GAO Qing-hua, WANG Yue, LUO Tong-yang. Expression and Enzymatic Characterization of Codon-optimized FAD-dependent Glucose Dehydrogenase in Pichia pastoris [J]. Biotechnology Bulletin, 2019, 35(7): 114-120. |
[11] | SHI Bao-zhong, HU Jian-ran, LI Ping, XU Kai. Immunoregulatory Effect of Polysaccharides from Codonopsis pilosula on the Ana-1 Macrophages in Mice [J]. Biotechnology Bulletin, 2019, 35(6): 114-118. |
[12] | JIN Yong-mei, CHEN Mo-jun, LIU Xiao-xiao, LIN Xiu-feng. Antigenic Epitope Analysis and Preparation of Polyclonal Antibody of Lepidopteran Pest-resistant Gene cry1C [J]. Biotechnology Bulletin, 2018, 34(9): 224-229. |
[13] | LIU Yi-jun, JIA Yu-kun, WANG Ling-fang, LIU Hong-xing, YANG Xian-yu. Prokaryotic Expression,Purification and Antiserum Preparation of Recombinant EDF-1 of Bufo gargarizans [J]. Biotechnology Bulletin, 2018, 34(10): 129-134. |
[14] | HU Jian-ran LI Ping LEI Hai-ying LIU Xian-rui. Effects of Polysaccharides from Lu Dangshen(Codonopsis pilosula)on Proliferation and Migration of Human Cervical SiHa [J]. Biotechnology Bulletin, 2017, 33(5): 159-163. |
[15] | CAI Dong-mei, GONG Guo-li. The Current Status and Future Perspectives of Production of Biopharmaceuticals in Escherichia coli [J]. Biotechnology Bulletin, 2016, 32(8): 34-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||