Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (8): 13-23.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0251
Previous Articles Next Articles
WANG Yao1(), WANG Rong-huan1, FENG Ling-yang2, ZHANG Lu1, ZHAO Qi2, WANG Jia-le2, ZHAO Jiu-ran1()
Received:
2024-03-15
Online:
2024-08-26
Published:
2024-09-05
Contact:
ZHAO Jiu-ran
E-mail:wangyao897@126.com;maizezhao@126.com
WANG Yao, WANG Rong-huan, FENG Ling-yang, ZHANG Lu, ZHAO Qi, WANG Jia-le, ZHAO Jiu-ran. Research Progress of Crop Resistance to ACCase-inhibitor-like Herbicides[J]. Biotechnology Bulletin, 2024, 40(8): 13-23.
类型 Type | 主要成分 Main components |
---|---|
芳氧苯氧丙酸酯类 Aryloxyphenoxypropionates(FOPs) | 禾草灵(diclofop-methyl),精喹禾灵(quizalofop-P-ethyl),吡氟禾草灵(fluazifop-butyl),精噁唑禾草灵(fenoxaprop-P-ethyl),喹禾灵(quizalofop-ethyl),氟吡甲禾灵(haloxyfop-P-methyl)等 |
环己二酮类Cyclohexanediones(DIMs) | 烯草酮(clethodim),烯禾啶(sethoxydim),吡喃草酮(tepraloxydim),噻草酮(cycloxdim)等 |
苯基吡唑啉类Phenylpyrazoline(DEN) | 唑啉草酯(pinoxaden) |
Table 1 Main types of ACCase-inhibitor-like herbicides
类型 Type | 主要成分 Main components |
---|---|
芳氧苯氧丙酸酯类 Aryloxyphenoxypropionates(FOPs) | 禾草灵(diclofop-methyl),精喹禾灵(quizalofop-P-ethyl),吡氟禾草灵(fluazifop-butyl),精噁唑禾草灵(fenoxaprop-P-ethyl),喹禾灵(quizalofop-ethyl),氟吡甲禾灵(haloxyfop-P-methyl)等 |
环己二酮类Cyclohexanediones(DIMs) | 烯草酮(clethodim),烯禾啶(sethoxydim),吡喃草酮(tepraloxydim),噻草酮(cycloxdim)等 |
苯基吡唑啉类Phenylpyrazoline(DEN) | 唑啉草酯(pinoxaden) |
Fig. 4 Binding mode of the interactions between yeast ACCase CT domain and haloxyfop A: Stereographic diagram showing the binding sites for haloxyfop(Left: The structure of binding interface before binding haloxyfop. Right: The structure of binding interface after binding haloxyfop). B: Schematic diagram showing binding interface between haloxyfop and the CT domain
植物种类 Plant species | 变异位点 Mutant sites | FOPs类 FOPs types | DIMs类 DIMs types |
---|---|---|---|
看麦娘A. aequalis[ | I1781L | 精噁唑禾草灵、炔草酯 | N |
日本看麦娘A. japonicus | W2027C[ | 恶唑禾草灵、炔草酯、吡氟禾草灵、高效氟吡甲禾灵、氰氟草酯、噁唑酰草胺 | N |
大穗看麦娘A. myosuroides | I1781L/V[ | 精噁唑禾草灵、炔草酯、氟吡甲禾灵 | 烯草酮、噻草酮 |
I1781T[ | 炔草酯 | 噻草酮 | |
D2078G[ | 精噁唑禾草灵、炔草酯、氟吡甲禾灵 | 烯草酮、噻草酮 | |
C2088R[ | 炔草酯、禾草灵、吡氟禾草灵、氟吡甲禾灵、喹禾灵 | 烯草酮、噻草酮、稀禾定、吡喃草酮 | |
W1999C/S[ | 精噁唑禾草灵、炔草酯、氟吡甲禾灵 | N | |
W2027C[ | 精噁唑禾草灵、炔草酯、氟吡甲禾灵 | N | |
I2041N/V[ | 精噁唑禾草灵、炔草酯、氟吡甲禾灵 | N | |
G2096A[ | 精噁唑禾草灵、炔草酯、氟吡甲禾灵 | N | |
野燕麦A. fatua[ | I1781L | 精噁唑禾草灵、炔草酯 | 烯草酮、噻草酮 |
狗尾草S. viridis[ | I1781L | 禾草灵、氟吡甲禾灵 | 烯草酮、噻草酮 |
硬直黑麦草L. rigidum[ | I1781L | 禾草灵、氟吡甲禾灵 | 烯草酮、噻草酮 |
D2078G | 禾草灵、氟吡甲禾灵 | 烯草酮、噻草酮 | |
C2088R | 禾草灵、氟吡甲禾灵 | 烯草酮、噻草酮 | |
不实野燕麦A. sterilis[ | I1781L | 炔草酯 | 肟草酮 |
W2027C | 精噁唑禾草灵、炔草酯 | N | |
I2041N | 精噁唑禾草灵 | N | |
D2078G | 精噁唑禾草灵、氟吡甲禾灵 | 稀禾定、肟草酮 | |
W1999C | 精噁唑禾草灵 | N | |
棒头草P. fugax[ | W1999S | 精噁唑禾草灵、炔草酯 | 稀禾定、烯草酮 |
细虉草P. minor[ | W2027C | 禾草灵、精噁唑禾草灵、炔草酯 | N |
D2078G | 禾草灵、精噁唑禾草灵、炔草酯 | N | |
奇虉草P. paradoxa[ | I1781L | 炔草酯 | 肟草酮 |
D2078G | 精噁唑禾草灵、氟吡甲禾灵 | 稀禾定、肟草酮 |
Table 2 Effective mutation sites of weeds resistant to FOPs and DIMs herbicides
植物种类 Plant species | 变异位点 Mutant sites | FOPs类 FOPs types | DIMs类 DIMs types |
---|---|---|---|
看麦娘A. aequalis[ | I1781L | 精噁唑禾草灵、炔草酯 | N |
日本看麦娘A. japonicus | W2027C[ | 恶唑禾草灵、炔草酯、吡氟禾草灵、高效氟吡甲禾灵、氰氟草酯、噁唑酰草胺 | N |
大穗看麦娘A. myosuroides | I1781L/V[ | 精噁唑禾草灵、炔草酯、氟吡甲禾灵 | 烯草酮、噻草酮 |
I1781T[ | 炔草酯 | 噻草酮 | |
D2078G[ | 精噁唑禾草灵、炔草酯、氟吡甲禾灵 | 烯草酮、噻草酮 | |
C2088R[ | 炔草酯、禾草灵、吡氟禾草灵、氟吡甲禾灵、喹禾灵 | 烯草酮、噻草酮、稀禾定、吡喃草酮 | |
W1999C/S[ | 精噁唑禾草灵、炔草酯、氟吡甲禾灵 | N | |
W2027C[ | 精噁唑禾草灵、炔草酯、氟吡甲禾灵 | N | |
I2041N/V[ | 精噁唑禾草灵、炔草酯、氟吡甲禾灵 | N | |
G2096A[ | 精噁唑禾草灵、炔草酯、氟吡甲禾灵 | N | |
野燕麦A. fatua[ | I1781L | 精噁唑禾草灵、炔草酯 | 烯草酮、噻草酮 |
狗尾草S. viridis[ | I1781L | 禾草灵、氟吡甲禾灵 | 烯草酮、噻草酮 |
硬直黑麦草L. rigidum[ | I1781L | 禾草灵、氟吡甲禾灵 | 烯草酮、噻草酮 |
D2078G | 禾草灵、氟吡甲禾灵 | 烯草酮、噻草酮 | |
C2088R | 禾草灵、氟吡甲禾灵 | 烯草酮、噻草酮 | |
不实野燕麦A. sterilis[ | I1781L | 炔草酯 | 肟草酮 |
W2027C | 精噁唑禾草灵、炔草酯 | N | |
I2041N | 精噁唑禾草灵 | N | |
D2078G | 精噁唑禾草灵、氟吡甲禾灵 | 稀禾定、肟草酮 | |
W1999C | 精噁唑禾草灵 | N | |
棒头草P. fugax[ | W1999S | 精噁唑禾草灵、炔草酯 | 稀禾定、烯草酮 |
细虉草P. minor[ | W2027C | 禾草灵、精噁唑禾草灵、炔草酯 | N |
D2078G | 禾草灵、精噁唑禾草灵、炔草酯 | N | |
奇虉草P. paradoxa[ | I1781L | 炔草酯 | 肟草酮 |
D2078G | 精噁唑禾草灵、氟吡甲禾灵 | 稀禾定、肟草酮 |
植物种类Plant species | 专利授权或公开号Patent license or publicationed code | 变异位点Mutation site | FOPs类 FOPs type | DIMs类 DIMs type |
---|---|---|---|---|
小麦T. aestivum | WO2012106321A1 | A2004V | R | N |
水稻O. sativa | CN112410308A | W2010L+ C2099R | R | N |
水稻O. sativa | CN108359646A | I1792L | R | N |
A2015V | R | N | ||
W2038C | R | N | ||
I2052N | R | N | ||
D2089G | R | N | ||
I1792L+A2015V | R | N | ||
A2015V+W2038C | R | N | ||
I1792L+W2038C | R | N | ||
水稻O. sativa | CN201810138888.3 | N1791S | R | R |
N1791S+I1792L | R | R | ||
N1791S+G2107S | R | R |
Table 3 Effective mutation sites resistant to FOPs and DIMs herbicides by EMS
植物种类Plant species | 专利授权或公开号Patent license or publicationed code | 变异位点Mutation site | FOPs类 FOPs type | DIMs类 DIMs type |
---|---|---|---|---|
小麦T. aestivum | WO2012106321A1 | A2004V | R | N |
水稻O. sativa | CN112410308A | W2010L+ C2099R | R | N |
水稻O. sativa | CN108359646A | I1792L | R | N |
A2015V | R | N | ||
W2038C | R | N | ||
I2052N | R | N | ||
D2089G | R | N | ||
I1792L+A2015V | R | N | ||
A2015V+W2038C | R | N | ||
I1792L+W2038C | R | N | ||
水稻O. sativa | CN201810138888.3 | N1791S | R | R |
N1791S+I1792L | R | R | ||
N1791S+G2107S | R | R |
植物种类Plant species | 专利授权或公开号Patent license or publicationed code | 变异位点Mutant sites | FOPs类FOPs type | DIMs类DIMs type |
---|---|---|---|---|
小麦T. aestivum | CN201811438688.6 | R1708C | R | R |
N1768S | R | R | ||
I1769L | R | R | ||
A1992V | R | R | ||
W2015C | R | R | ||
I2029N | R | R | ||
D2066G | R | R | ||
G2084S | R | R | ||
水稻O. sativa | CN201811176178.6 | R1731C | R | N |
Y2276D | R | N | ||
R1731C+Y2276D | R | N | ||
水稻O. sativa | CN201810959406.0 | A1796G | R | N |
A1797P | R | N | ||
E1835P | R | N | ||
V1875F | R | N | ||
W2010G | R | N | ||
W2010C | R | N | ||
E2050G | R | N | ||
V2060L | R | N | ||
A2070V | R | N | ||
K2106E | R | N |
Table 4 Novel germplasm resistant to FOPs and DIMs herbicides by transgenic technology
植物种类Plant species | 专利授权或公开号Patent license or publicationed code | 变异位点Mutant sites | FOPs类FOPs type | DIMs类DIMs type |
---|---|---|---|---|
小麦T. aestivum | CN201811438688.6 | R1708C | R | R |
N1768S | R | R | ||
I1769L | R | R | ||
A1992V | R | R | ||
W2015C | R | R | ||
I2029N | R | R | ||
D2066G | R | R | ||
G2084S | R | R | ||
水稻O. sativa | CN201811176178.6 | R1731C | R | N |
Y2276D | R | N | ||
R1731C+Y2276D | R | N | ||
水稻O. sativa | CN201810959406.0 | A1796G | R | N |
A1797P | R | N | ||
E1835P | R | N | ||
V1875F | R | N | ||
W2010G | R | N | ||
W2010C | R | N | ||
E2050G | R | N | ||
V2060L | R | N | ||
A2070V | R | N | ||
K2106E | R | N |
植物种类Plant species | 专利授权或公开号Patent license or publicationed number | 变异位点Mutant sites | FOPs类FOPs types | DIMs类DIMs types |
---|---|---|---|---|
水稻O. sativa | CN202111097312.5 | I1879V | N | R |
C2186R | N | R | ||
水稻O. sativa | CN202111596611.3 | W2097G | R | N |
I2139N | R | N | ||
I2139V | R | N | ||
G2194S | R | N | ||
水稻O. sativa | CN202110506568.0 | W2097G | R | N |
水稻O. sativa | CN202110506569.5 | P1927Y | R | N |
水稻O. sativa | CN201911126536.7 | W2038S | R | N |
Table 5 Novel germplasm resistant to FOPss and DIMs herbicides by gene editing technology
植物种类Plant species | 专利授权或公开号Patent license or publicationed number | 变异位点Mutant sites | FOPs类FOPs types | DIMs类DIMs types |
---|---|---|---|---|
水稻O. sativa | CN202111097312.5 | I1879V | N | R |
C2186R | N | R | ||
水稻O. sativa | CN202111596611.3 | W2097G | R | N |
I2139N | R | N | ||
I2139V | R | N | ||
G2194S | R | N | ||
水稻O. sativa | CN202110506568.0 | W2097G | R | N |
水稻O. sativa | CN202110506569.5 | P1927Y | R | N |
水稻O. sativa | CN201911126536.7 | W2038S | R | N |
除草剂Herbicide | 基因Gene | 来源Souce |
---|---|---|
草甘膦 | 2mepsps | 玉米Zea mays |
cp4 epsp | 根癌农杆菌CP4Agrobacterium tumefaciens strain CP4 | |
epsps(Ag) | 球形节杆菌Arthrobacter globiformis | |
epsps grg23ace5 | 基因合成 | |
gat4601 | 地衣芽孢杆菌Bacillus licheniformis | |
gat4621 | 地衣芽孢杆菌Bacillus licheniformis | |
goxv247 | 人苍白杆菌LBAAOchrobactrum anthropi strain LBAA | |
mepsps | 玉米Zea mays | |
2,4-D类除草剂 | aad-1 | 鞘脂菌Sphingobium herbicidovorans |
aad-12 | 食酸戴尔福特菌Delftia acidovorans | |
ft_t | 鞘脂菌Sphingobium herbicidovorans | |
耐麦草畏除草剂 | dmo | 嗜麦芽窄食单胞菌DI-6Stenotrophomonas maltophilia strain DI-6 |
草铵膦 | Bar | 吸水链霉菌Streptomyces hygroscopicus |
mo-pat | 产绿色链霉菌Streptomyces viridochromogenes | |
pat | 产绿色链霉菌Streptomyces viridochromogenes | |
pat(syn) | 基因合成 | |
咪唑啉酮除草剂 | AtAHAS | 拟南芥Arabidopsis thaliana |
HPPD抑制剂类 | hppdPF W336 | 荧光假单胞菌A32Pseudomonas fluorescens strain A32 |
avhppd-03 | 燕麦Avena sativa | |
hppdPf4Pa | 荧光假单胞Pseudomonas fluorescens | |
Oxynil类除草剂 | bxn | 肺炎克雷伯氏菌臭鼻亚种Klebsiella pneumoniae subsp. Ozaenae |
磺酰脲除草剂 | Als | 拟南芥Arabidopsis thaliana |
csr1-2 | 拟南芥Arabidopsis thaliana | |
gm-hra | 大豆Glycine max | |
S4-HrA | 烟草Nicotiana tabacu | |
surB | 烟草Nicotiana tabacu | |
zm-hra | 玉米Zea mays |
Table 6 Herbicide-tolerant genes and their sources
除草剂Herbicide | 基因Gene | 来源Souce |
---|---|---|
草甘膦 | 2mepsps | 玉米Zea mays |
cp4 epsp | 根癌农杆菌CP4Agrobacterium tumefaciens strain CP4 | |
epsps(Ag) | 球形节杆菌Arthrobacter globiformis | |
epsps grg23ace5 | 基因合成 | |
gat4601 | 地衣芽孢杆菌Bacillus licheniformis | |
gat4621 | 地衣芽孢杆菌Bacillus licheniformis | |
goxv247 | 人苍白杆菌LBAAOchrobactrum anthropi strain LBAA | |
mepsps | 玉米Zea mays | |
2,4-D类除草剂 | aad-1 | 鞘脂菌Sphingobium herbicidovorans |
aad-12 | 食酸戴尔福特菌Delftia acidovorans | |
ft_t | 鞘脂菌Sphingobium herbicidovorans | |
耐麦草畏除草剂 | dmo | 嗜麦芽窄食单胞菌DI-6Stenotrophomonas maltophilia strain DI-6 |
草铵膦 | Bar | 吸水链霉菌Streptomyces hygroscopicus |
mo-pat | 产绿色链霉菌Streptomyces viridochromogenes | |
pat | 产绿色链霉菌Streptomyces viridochromogenes | |
pat(syn) | 基因合成 | |
咪唑啉酮除草剂 | AtAHAS | 拟南芥Arabidopsis thaliana |
HPPD抑制剂类 | hppdPF W336 | 荧光假单胞菌A32Pseudomonas fluorescens strain A32 |
avhppd-03 | 燕麦Avena sativa | |
hppdPf4Pa | 荧光假单胞Pseudomonas fluorescens | |
Oxynil类除草剂 | bxn | 肺炎克雷伯氏菌臭鼻亚种Klebsiella pneumoniae subsp. Ozaenae |
磺酰脲除草剂 | Als | 拟南芥Arabidopsis thaliana |
csr1-2 | 拟南芥Arabidopsis thaliana | |
gm-hra | 大豆Glycine max | |
S4-HrA | 烟草Nicotiana tabacu | |
surB | 烟草Nicotiana tabacu | |
zm-hra | 玉米Zea mays |
[1] | 袁晓春, 张文玲, 万秀娟, 等. 大豆玉米带状复合种植中存在的问题及解决对策[J]. 种子科技, 2023, 41(16): 63-65. |
Yuan XC, Zhang WL, Wan XJ, et al. Problems and countermeasures in soybean-corn strip compound planting[J]. Seed Sci Technol, 2023, 41(16): 63-65. | |
[2] | 张帅, 王云鹏, 李永平. 大豆玉米带状复合种植田杂草防治关键技术与治理建议[J]. 现代农药, 2023, 22(5): 46-48. |
Zhang S, Wang YP, Li YP. Key techniques and suggestions of weed control in soybean and maize strip compound planting field[J]. Mod Agrochem, 2023, 22(5): 46-48. | |
[3] | Sasaki Y, Nagano Y. Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding[J]. Biosci Biotechnol Biochem, 2004, 68(6): 1175-1184. |
[4] | Herbert D, Price LJ, Alban C, et al. Kinetic studies on two isoforms of acetyl-CoA carboxylase from maize leaves[J]. Biochem J, 1996, 318(Pt 3): 997-1006. |
[5] |
Kozaki A, Mayumi K, Sasaki Y. Thiol-disulfide exchange between nuclear-encoded and chloroplast-encoded subunits of pea acetyl-CoA carboxylase[J]. J Biol Chem, 2001, 276(43): 39919-39925.
doi: 10.1074/jbc.M103525200 pmid: 11546765 |
[6] |
Tang W, Zhou FY, Chen J, et al. Resistance to ACCase-inhibiting herbicides in an Asia minor bluegrass(Polypogon fugax)population in China[J]. Pestic Biochem Physiol, 2014, 108: 16-20.
doi: 10.1016/j.pestbp.2013.11.001 pmid: 24485310 |
[7] |
Zhang HL, Tweel B, Tong L. Molecular basis for the inhibition of the carboxyltransferase domain of acetyl-coenzyme-a carboxylase by haloxyfop and diclofop[J]. Proc Natl Acad Sci USA, 2004, 101(16): 5910-5915.
pmid: 15079078 |
[8] |
Nikolau BJ, Ohlrogge JB, Wurtele ES. Plant biotin-containing carboxylases[J]. Arch Biochem Biophys, 2003, 414(2): 211-222.
doi: 10.1016/s0003-9861(03)00156-5 pmid: 12781773 |
[9] |
Cronan JE Jr, Waldrop GL. Multi-subunit acetyl-CoA carboxylases[J]. Prog Lipid Res, 2002, 41(5): 407-435.
pmid: 12121720 |
[10] |
Xiang S, Callaghan MM, Watson KG, et al. A different mechanism for the inhibition of the carboxyltransferase domain of acetyl-coenzyme A carboxylase by tepraloxydim[J]. Proc Natl Acad Sci USA, 2009, 106(49): 20723-20727.
doi: 10.1073/pnas.0908431106 pmid: 19926852 |
[11] | 任康太, 胡方中, 王翔, 等. 芳氧基哒嗪类衍生物的合成及除草活性[J]. 应用化学, 2002, 19(9): 827-831. |
Ren KT, Hu FZ, Wang X, et al. Synthesis and herbicidal activity of aryloxy pyridazines[J]. Chin J Appl Chem, 2002, 19(9): 827-831. | |
[12] | 孙林英, 姜林, 王茂荣. 取代均三氮杂苯氧基苯氧丙酸酯的合成及其除草活性[J]. 合成化学, 2009, 17(3): 324-326. |
Sun LY, Jiang L, Wang MR. Synthesis and herbicidal activity of substitued s-triazinoxy phenoxy propanates[J]. Chin J Synth Chem, 2009, 17(3): 324-326. | |
[13] | 关爱莹, 唐咏, 吴鸿飞, 等. 2-(2-(4-(6-氯喹喔啉-2-基氧)苯氧基)丙酰氧基)-丁烯酸酯类化合物的合成与除草活性[J]. 农药, 2008, 47(2): 94-96. |
Guan AY, Tang Y, Wu HF, et al. The synthesis and herbicidal activity of 2-(2-(4-(6-chloroquinoxalin-2-yloxy)phenoxy)propanoyloxy)-3-methylbut-3-enoates[J]. Agrochemicals, 2008, 47(2): 94-96. | |
[14] |
Mitchell G, Bartlett DW, Fraser TE, et al. Mesotrione: a new selective herbicide for use in maize[J]. Pest Manag Sci, 2001, 57(2): 120-128.
doi: 10.1002/1526-4998(200102)57:2<120::AID-PS254>3.0.CO;2-E pmid: 11455642 |
[15] |
Zhang HL, Yang ZR, Shen Y, et al. Crystal structure of the carboxyltransferase domain of acetyl-coenzyme A carboxylase[J]. Science, 2003, 299(5615): 2064-2067.
pmid: 12663926 |
[16] | Heap I, Knight R. The occurrence of herbicide cross-resistance in a population of annual ryegrass, Lolium rigidum, resistant to diclofop-methyl[J]. Aust J Agric Res, 1986, 37(2): 149. |
[17] |
Kersten S, Rabanal FA, Herrmann J, et al. Deep haplotype analyses of target-site resistance locus ACCase in blackgrass enabled by pool-based amplicon sequencing[J]. Plant Biotechnol J, 2023, 21(6): 1240-1253.
doi: 10.1111/pbi.14033 pmid: 36807472 |
[18] |
Hamouzová K, Košnarová P, Salava J, et al. Mechanisms of resistance to acetolactate synthase-inhibiting herbicides in populations of Apera spica-venti from the Czech Republic[J]. Pest Manag Sci, 2014, 70(4): 541-548.
doi: 10.1002/ps.3563 pmid: 23893862 |
[19] | Li LX, Bi YL, Liu WT, et al. Molecular basis for resistance to fenoxaprop-p-ethyl in American sloughgrass(Beckmannia syzigachne Steud.)[J]. Pestic Biochem Physiol, 2013, 105(2): 118-121. |
[20] | Broster J, Koetz E, Wu HW. Herbicide resistance frequencies in ryegrass(Lolium spp.)and other grass species in Tasmania[J]. Plant Prot Q, 2012, 27: 36-42. |
[21] | Kumar V, Jha P. First report of Ser653Asn mutation endowing high-level resistance to imazamox in downy brome(Bromus tectorum L.)[J]. Pest Manag Sci, 2017, 73(12): 2585-2591. |
[22] | Xia WW, Pan L, Li J, et al. Molecular basis of ALS- and/or ACCase-inhibitor resistance in shortawn foxtail(Alopecurus aequalis Sobol.)[J]. Pestic Biochem Physiol, 2015, 122: 76-80. |
[23] | Beckie HJ, Tardif FJ. Herbicide cross resistance in weeds[J]. Crop Prot, 2012, 35: 15-28. |
[24] | Kaundun SS, Hutchings SJ, Dale RP, et al. Role of a novel I1781T mutation and other mechanisms in conferring resistance to acetyl-CoA carboxylase inhibiting herbicides in a black-grass population[J]. PLoS One, 2013, 8(7): e69568. |
[25] | Kaundun SS, Hutchings SJ, Dale RP, et al. Broad resistance to ACCase inhibiting herbicides in a ryegrass population is due only to a cysteine to arginine mutation in the target enzyme[J]. PLoS One, 2012, 7(6): e39759. |
[26] | Perotti VE, Larran AS, Palmieri VE, et al. Herbicide resistant weeds: a call to integrate conventional agricultural practices, molecular biology knowledge and new technologies[J]. Plant Sci, 2020, 290: 110255. |
[27] | Délye C. Weed resistance to acetyl coenzyme A carboxylase inhibitors: an update[J]. Weed Sci, 2005, 53(5): 728-746. |
[28] | Délye C, Matéjicek A, Michel S. Cross-resistance patterns to ACCase-inhibiting herbicides conferred by mutant ACCase isoforms in Alopecurus myosuroides Huds.(black-grass), re-examined at the recommended herbicide field rate[J]. Pest Manag Sci, 2008, 64(11): 1179-1186. |
[29] | Petit C, Bay G, Pernin F, et al. Prevalence of cross- or multiple resistance to the acetyl-coenzyme A carboxylase inhibitors fenoxaprop, clodinafop and pinoxaden in black-grass(Alopecurus myosuroides Huds.)in France[J]. Pest Manag Sci, 2010, 66(2): 168-177. |
[30] |
Christoffers MJ, Berg ML, Messersmith CG. An isoleucine to leucine mutation in acetyl-CoA carboxylase confers herbicide resistance in wild oat[J]. Genome, 2002, 45(6): 1049-1056.
pmid: 12502249 |
[31] |
Délye C, Zhang XQ, Chalopin C, et al. An isoleucine residue within the carboxyl-transferase domain of multidomain acetyl-coenzyme A carboxylase is a major determinant of sensitivity to aryloxyphenoxypropionate but not to cyclohexanedione inhibitors[J]. Plant Physiol, 2003, 132(3): 1716-1723.
doi: 10.1104/pp.103.021139 pmid: 12857850 |
[32] | Yu Q, Collavo A, Zheng MQ, et al. Diversity of acetyl-coenzyme A carboxylase mutations in resistant Lolium populations: evaluation using clethodim[J]. Plant Physiol, 2007, 145(2): 547-558. |
[33] |
Liu WJ, Harrison DK, Chalupska D, et al. Single-site mutations in the carboxyltransferase domain of plastid acetyl-CoA carboxylase confer resistance to grass-specific herbicides[J]. Proc Natl Acad Sci USA, 2007, 104(9): 3627-3632.
pmid: 17360693 |
[34] | Zhao N, Ge LA, Yan YY, et al. Trp-1999-Ser mutation of acetyl-CoA carboxylase and cytochrome P450s-involved metabolism confer resistance to fenoxaprop-P-ethyl in Polypogon fugax[J]. Pest Manag Sci, 2019, 75(12): 3175-3183. |
[35] | Gherekhloo J, Osuna MD, De Prado R. Biochemical and molecular basis of resistance to ACCase-inhibiting herbicides in Iranian Phalaris minor populations[J]. Weed Res, 2012, 52(4): 367-372. |
[36] | Collavo A, Panozzo S, Lucchesi G, et al. Characterisation and management of Phalaris paradoxa resistant to ACCase-inhibitors[J]. Crop Prot, 2011, 30(3): 293-299. |
[37] |
Settles AM. EMS mutagenesis of maize pollen[J]. Methods Mol Biol, 2020, 2122: 25-33.
doi: 10.1007/978-1-0716-0342-0_3 pmid: 31975293 |
[38] | Ostlie MH, Haley S, Westra P, et al. Acetyl co-enzyme A carboxylase herbicide resistant plants: WO2012106321(A1)[P]. 2012-08-09. |
[39] | 唐晓艳, 邓兴旺, 周君莉, 等. 除草剂抗性突变体及其应用: CN108486070B[P]. 2022-05-27. |
Tang XY, Deng XW, Zhou JL, et al. Herbicide resistance mutant and its application: CN108486070B[P]. 2022-05-27. | |
[40] | Gengenbach BG, Somers DA, Wyse DL, et al. Method and an acetyl CoA carboxylase gene for conferring herbicide tolerance: US5498544A[P]. 1996-03-12. |
[41] | 张保龙, 王金彦, 凌溪铁. 一种水稻ACCase突变型基因及其在植物抗除草剂中的应用: CN109371000A[P]. 2019-02-22. |
Zhang BL, Wang JJY, Ling XT. A rice ACCase mutant gene and its application in plant herbicide resistance: CN109371000A[P]. 2019-02-22. | |
[42] |
Zhang R, Liu JX, Chai ZZ, et al. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing[J]. Nat Plants, 2019, 5(5): 480-485.
doi: 10.1038/s41477-019-0405-0 pmid: 30988404 |
[43] |
Li C, Zong Y, Wang YP, et al. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion[J]. Genome Biol, 2018, 19(1): 59.
doi: 10.1186/s13059-018-1443-z pmid: 29807545 |
[44] |
Liu XS, Qin RY, Li J, et al. A CRISPR-Cas9-mediated domain-specific base-editing screen enables functional assessment of ACCase variants in rice[J]. Plant Biotechnol J, 2020, 18(9): 1845-1847.
doi: 10.1111/pbi.13348 pmid: 31985873 |
[45] |
Zhang FG, Zhang Z, Wei Z, et al. Microbiome-conferred herbicides resistance[J]. New Phytol, 2024, 242(2): 327-330.
doi: 10.1111/nph.19574 pmid: 38320978 |
[46] | Suda H, Kubo T, Yoshimoto Y, et al. Transcriptionally linked simultaneous overexpression of P450 genes for broad-spectrum herbicide resistance[J]. Plant Physiol, 2023, 192(4): 3017-3029. |
[47] |
Li C, Zhang R, Meng XB, et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors[J]. Nat Biotechnol, 2020, 38(7): 875-882.
doi: 10.1038/s41587-019-0393-7 pmid: 31932727 |
[48] |
Xu RF, Liu XS, Li J, et al. Identification of herbicide resistance OsACC1 mutations via in planta prime-editing-library screening in rice[J]. Nat Plants, 2021, 7(7): 888-892.
doi: 10.1038/s41477-021-00942-w pmid: 34112987 |
[49] | Sun C, Lei Y, Li BS, et al. Precise integration of large DNA sequences in plant genomes using PrimeRoot editors[J]. Nat Biotechnol, 2024, 42(2): 316-327. |
[50] | Yan J, Oyler-Castrillo P, Ravisankar P, et al. Improving prime editing with an endogenous small RNA-binding protein[J]. Nature, 2024, 628(8008): 639-647. |
[51] | 邱丽娟, 郭兵福, 郭勇, 等. 一种抗草甘膦转基因大豆及其制备方法与应用: CN105505981B[P]. 2018-12-15. |
Qiu LJ, Guo BF, Guo Y, et al. The preparation method and application of glyphosate-resistant transgenic soybean: CN105505981B[P]. 2018-12-15. | |
[52] | 张先文, 王东芳, 沈志成. 一种抗草甘膦融合基因、编码蛋白及其应用: CN106350532A[P]. 2017-1-15. |
Zhang XW, Wang DF, Shen ZC. The glyphosate-resistant fusion gene, encoding protein and its application: CN106350532A[P]. 2017-1-15. | |
[53] | Fartyal D, Agarwal A, James D, et al. Co-expression of P173S mutant rice EPSPS and igrA genes results in higher glyphosate tolerance in transgenic rice[J]. Front Plant Sci, 2018, 9: 144. |
[54] |
Li SY, Li PC, Li XY, et al. In maize, co-expression of GAT and GR79-EPSPS provides high glyphosate resistance, along with low glyphosate residues[J]. aBIOTECH, 2023, 4(4): 277-290.
doi: 10.1007/s42994-023-00114-8 pmid: 38106436 |
[1] | WEI Ting-liu, MIAO Hua-biao, WU Qian, HUANG Zun-xi. Heterologous Expression, Enzymatic Characterization of Laccase BmLac and Degradation of Gossypol by It [J]. Biotechnology Bulletin, 2023, 39(12): 320-328. |
[2] | WANG Yu-chen, DING Zun-dan, GUAN Fei-fei, TIAN Jian, LIU Guo-an, WU Ning-feng. Identification of the Thermostable Laccase Gene ba4 and Characterization of Its Enzymatic Properties [J]. Biotechnology Bulletin, 2022, 38(8): 252-260. |
[3] | JIA Chen-bo, SU Yi-huang, MA Xiu-mei, WANG Chun-li, XU Chun-yan. Medium Optimization for Laccase Production by Acrophialophora sp. Z45 and Its Decolorization of Dyes [J]. Biotechnology Bulletin, 2022, 38(6): 252-260. |
[4] | MAO Guo-tao, WANG Jie, WANG Kai, WANG Fang-yuan, CAO Le-yan, ZHANG Hong-sen, SONG An-dong. Characterization of Laccase TaLac from Thermus aquaticus and Its Application in Removing Malachite Green Dye [J]. Biotechnology Bulletin, 2022, 38(4): 261-268. |
[5] | TIAN Jia-hui, FENG Jia-li, LU Jun-hua, MAO Lin-jing, HU Zhu-ran, WANG Ying, CHU Jie. Isolation,Purification and Characterization of Laccase LacT-1 from Cerrena unicolor [J]. Biotechnology Bulletin, 2021, 37(8): 186-194. |
[6] | CHEN Ming-yu, NI Xuan, SI You-bin, SUN Kai. Advances in the Application of Immobilized Fungal Laccase for the Bioremediation of Environmental Organic Contamination [J]. Biotechnology Bulletin, 2021, 37(6): 244-258. |
[7] | XIONG Xue, LI Peng, ZHANG Gui-he, XIANG Zhun, TAO Wen-Guang, ZHOU Guang-yan, HE Yao-wei. Effects of Different Cultivation Substrates on the Laccase Activities of Lentinula edodes During Liquid Fermentation [J]. Biotechnology Bulletin, 2021, 37(12): 50-59. |
[8] | WANG Hao, TANG Lu-xin, MA Hong-fei, QIAN Kun, SI Jing, CUI Bao-kai. Immobilization of Laccase from Trametes orientalis and Its Application for Decolorization of Multifarious Dyes [J]. Biotechnology Bulletin, 2021, 37(11): 142-157. |
[9] | CHEN Hui-ling, ZHANG Qing-yun, SUN Kai. Laccase-Mediated Oxidative Coupling of Phenolic Compounds in vivo:from Fundamentals to Multifunctional Applications in Green Synthesis [J]. Biotechnology Bulletin, 2020, 36(5): 193-204. |
[10] | SUN Kai, CHEN Zheng-jie, WANG Deng-yang, SHU Ru-yu, WU Ji, WEI Fan. Removal of Bisphenol A in Wastewater by Immobilized Laccase [J]. Biotechnology Bulletin, 2020, 36(12): 188-198. |
[11] | WU Yi, MA Hong-fei, CAO Yong-jia, SI Jing, CUI Bao-kai. Medium Optimization for the Laccase Production by White Rot Fungus Porodaedalea laricis and Its Dye Decolorizing Capacity [J]. Biotechnology Bulletin, 2020, 36(1): 45-59. |
[12] | WU Yi, MA Hong-fei, CAO Yong-jia, SI Jing, CUI Bao-kai. Advances on Properties,Production,Purification and Immobilization of Fungal Laccase [J]. Biotechnology Bulletin, 2019, 35(9): 1-10. |
[13] | HU Chu-xiao, LEI Shan-yu, QIN Yan-ping, ZHAO Yi-jin, XIANG Quan-ju. Influence of Anthracene on Laccase Activity and Transcriptional Expression Profiles of Ganoderma lucidum [J]. Biotechnology Bulletin, 2019, 35(9): 112-117. |
[14] | HAN Shu-ran, LU Lei. Preparation of Cross-Linked Enzyme Aggregates and Its Application in Laccase Immobilization [J]. Biotechnology Bulletin, 2019, 35(3): 164-170. |
[15] | GONG Rui, SUN Kai, XIE Dao-yue. Applications of Fungal Laccase in Green Chemistry [J]. Biotechnology Bulletin, 2018, 34(4): 24-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||