Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (11): 162-168.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0308
Previous Articles Next Articles
SUN Mei-hua1(), SUN Hui-xian1, TIAN Lin-lin1, MIAO Yan-xiu1, HOU Lei-ping1, QI Ming-fang2(), LI Tian-lai2()
Received:
2024-03-28
Online:
2024-11-26
Published:
2024-12-19
Contact:
QI Ming-fang, LI Tian-lai
E-mail:sunmeihua19@163.com;qimingfang@syau.edu.cn;ltl@syau.edu.cn
SUN Mei-hua, SUN Hui-xian, TIAN Lin-lin, MIAO Yan-xiu, HOU Lei-ping, QI Ming-fang, LI Tian-lai. Functional Identification of YABBY2b Gene and Expression Analysis of Downstream Genes in Tomato[J]. Biotechnology Bulletin, 2024, 40(11): 162-168.
基因Gene | 引物序列Primer sequence(5'-3') |
---|---|
SlFW2.2 | F: GCTGGGATTGACAGGATTGC |
R: GCATACATTTCACCTGGTCATGC | |
SlKLUH | F: AGTTCACCCTCCTGGTCCAT |
R: ACCGAATGGTGCAAGCCTTA | |
SlCSR | F: AGCGGCTTCCATTTCACCTAA |
R: ATCACCACCACCACTGTCTG |
Table 1 Primers for gene expression analysis
基因Gene | 引物序列Primer sequence(5'-3') |
---|---|
SlFW2.2 | F: GCTGGGATTGACAGGATTGC |
R: GCATACATTTCACCTGGTCATGC | |
SlKLUH | F: AGTTCACCCTCCTGGTCCAT |
R: ACCGAATGGTGCAAGCCTTA | |
SlCSR | F: AGCGGCTTCCATTTCACCTAA |
R: ATCACCACCACCACTGTCTG |
株系Plant | 突变类型Mutation type | CRISPR/Cas9 T-DNA |
---|---|---|
#1 | 嵌合突变Chimeric mutation | + |
#3 | 双等位突变Biallelic mutation | + |
#7 | 双等位突变Biallelic mutation | + |
Table 2 Tomato yabby2b mutant of T0 generation
株系Plant | 突变类型Mutation type | CRISPR/Cas9 T-DNA |
---|---|---|
#1 | 嵌合突变Chimeric mutation | + |
#3 | 双等位突变Biallelic mutation | + |
#7 | 双等位突变Biallelic mutation | + |
Fig. 1 Tomato yabby2b mutant of T1 generation A: Gene sequence in yabby2b mutants(WT: Wild-type. #2, #3, #6: yabby2b mutant plants. PAM: Protospacer adjacent motif. - indicates a base deletion). B: CRISPR/Cas9 T-DNA was detected by PCR in mutants(1-11: plants of T1 generation). The same below
[1] | Monforte AJ, Diaz A, Caño-Delgado A, et al. The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon[J]. J Exp Bot, 2014, 65(16): 4625-4637. |
[2] | Van der Knaap E, Chakrabarti M, Chu YH, et al. What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape[J]. Front Plant Sci, 2014, 5: 227. |
[3] | Apri M, Kromdijk J, et al. Modelling cell division and endoreduplication in tomato fruit pericarp[J]. J Theor Biol, 2014, 349: 32-43. |
[4] | Cong B, Barrero LS, Tanksley SD. Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication[J]. Nat Genet, 2008, 40(6): 800-804. |
[5] | Frary A, Nesbitt TC, Grandillo S, et al. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size[J]. Science, 2000, 289(5476): 85-88. |
[6] | Zhang N, Brewer MT, van der Knaap E. Fine mapping of fw3.2 controlling fruit weight in tomato[J]. Theor Appl Genet, 2012, 125(2): 273-284. |
[7] | Chakrabarti M, Zhang N, Sauvage C, et al. A cytochrome P450 regulates a domestication trait in cultivated tomato[J]. Proc Natl Acad Sci USA, 2013, 110(42): 17125-17130. |
[8] | Mu Q. The cloning and cellular basis of a novel tomato fruit weight gene: Cell Size Regulator(FW11.3/CSR)[D]. Columbus: The Ohio State University, 2015. |
[9] | Cong B, Tanksley SD. FW2.2 and cell cycle control in developing tomato fruit: a possible example of gene co-option in the evolution of a novel organ[J]. Plant Mol Biol, 2006, 62(6): 867-880. |
[10] | Li Q, Chakrabarti M, Taitano NK, et al. Differential expression of SlKLUH controlling fruit and seed weight is associated with changes in lipid metabolism and photosynthesis-related genes[J]. J Exp Bot, 2021, 72(4): 1225-1244. |
[11] | Mu Q, Huang ZJ, Chakrabarti M, et al. Fruit weight is controlled by Cell Size Regulator encoding a novel protein that is expressed in maturing tomato fruits[J]. PLoS Genet, 2017, 13(8): e1006930. |
[12] | 刘爽. 赤霉素与fasciated在调控番茄心室形成中的作用关系分析[D]. 沈阳: 沈阳农业大学, 2012. |
Liu S. Analysis of the relationship between gibberellin and fasciated in regulating the formation of tomato locule[D]. Shenyang: Shenyang Agricultural University, 2012. | |
[13] | Xu C, Liberatore KL, MacAlister CA, et al. A cascade of arabinosyltransferases controls shoot meristem size in tomato[J]. Nat Genet, 2015, 47(7): 784-792. |
[14] | 孙美华. 调控番茄心室数量的fasciated位点基因解析[D]. 沈阳: 沈阳农业大学, 2020. |
Sun MH. Gene analysis of fasciated locus regulating the locule number of tomato[D]. Shenyang: Shenyang Agricultural University, 2020. | |
[15] | Dai MQ, Zhao Y, Ma Q, et al. The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism[J]. Plant Physiol, 2007, 144(1): 121-133. |
[16] | Franco-Zorrilla JM, López-Vidriero I, Carrasco JL, et al. DNA-binding specificities of plant transcription factors and their potential to define target genes[J]. Proc Natl Acad Sci USA, 2014, 111(6): 2367-2372. |
[17] | Gross T, Becker A. Transcription factor action orchestrates the complex expression pattern of CRABS CLAW in Arabidopsis[J]. Genes(Basel), 2021, 12(11): 1663. |
[18] | Bonaccorso O, Lee JE, Puah L, et al. FILAMENTOUS FLOWER controls lateral organ development by acting as both an activator and a repressor[J]. BMC Plant Biol, 2012, 12: 176. |
[19] | Jia DD, Chen LG, Yin GM, et al. Brassinosteroids regulate outer ovule integument growth in part via the control of INNER NO OUTER by BRASSINOZOLE-RESISTANT family transcription factors[J]. J Integr Plant Biol, 2020, 62(8): 1093-1111. |
[20] | Siegfried KR, Eshed Y, Baum SF, et al. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis[J]. Development, 1999, 126(18): 4117-4128. |
[21] | Ha CM, Jun JH, Fletcher JC. Control of Arabidopsis leaf morphogenesis through regulation of the YABBY and KNOX families of transcription factors[J]. Genetics, 2010, 186(1): 197-206. |
[22] | Toriba T, Harada K, Takamura A, et al. Molecular characterization the YABBY gene family in Oryza sativa and expression analysis of OsYABBY1[J]. Mol Genet Genomics, 2007, 277(5): 457-468. |
[23] | Dai MQ, Hu YF, Zhao Y, et al. Regulatory networks involving YABBY genes in rice shoot development[J]. Plant Signal Behav, 2007, 2(5): 399-400. |
[24] | Toriba T, Hirano HY. The DROOPING LEAF and OsETTIN2 genes promote awn development in rice[J]. Plant J, 2014, 77(4): 616-626. |
[25] | Lieberman SL, Ruderman JV. CK2 beta, which inhibits Mos function, binds to a discrete domain in the N-terminus of Mos[J]. Dev Biol, 2004, 268(2): 271-279. |
[26] | Homma MK, Wada I, Suzuki T, et al. CK2 phosphorylation of eukaryotic translation initiation factor 5 potentiates cell cycle progression[J]. Proc Natl Acad Sci USA, 2005, 102(43): 15688-15693. |
[27] | 宛晨晨, 陈元利, 樊婷婷. 蛋白激酶CK2的结构及其生理功能研究进展[J]. 生物工程学报, 2021, 37(12): 4201-4214. |
Wan CC, Chen YL, Fan TT. Advances in the structure and physiological function of protein kinase CK2[J]. Chin J Biotechnol, 2021, 37(12): 4201-4214. | |
[28] | Velez-Bermudez IC, Irar S, Carretero-Paulet L, et al. Specific characteristics of CK2β regulatory subunits in plants[J]. Mol Cell Biochem, 2011, 356(1/2): 255-260. |
[29] | Salinas P, Fuentes D, Vidal E, et al. An extensive survey of CK2 α and β subunits in Arabidopsis: Multiple isoforms exhibit differential subcellular localization[J]. Plant Cell Physiol, 2006, 47(9): 1295-1308. |
[30] | Łebska M, Ciesielski A, Szymona L, et al. Phosphorylation of maize eukaryotic translation initiation factor 5A(eIF5A)by casein kinase 2: identification of phosphorylated residue and influence on intracellular localization of eIF5A[J]. J Biol Chem, 2010, 285(9): 6217-6226. |
[31] | Espunya MC, Combettes B, Dot J, et al. Cell-cycle modulation of CK2 activity in tobacco BY-2 cells[J]. Plant J, 1999, 19(6): 655-666. |
[32] | Tapia JC, Bolanos-Garcia VM, Sayed M, et al. Cell cycle regulatory protein p27KIP1 is a substrate and interacts with the protein kinase CK2[J]. J Cell Biochem, 2004, 91(5): 865-879. |
[33] | Yang C, Sofroni K, Wijnker E, et al. The Arabidopsis Cdk1/Cdk2 homolog CDKA;1 controls chromosome axis assembly during plant meiosis[J]. EMBO J, 2020, 39(3): e101625. |
[1] | LIU Wen-zhi, HE Dan, LI Peng, FU Ying-lin, ZHANG Yi-xin, WEN Hua-jie, YU Wen-qing. Paenibacillus polymyxa New Strain X-11 and Its Growth-promoting Effects on Tomato and Rice [J]. Biotechnology Bulletin, 2024, 40(9): 249-259. |
[2] | LIAO Yang-mei, ZHAO Guo-chun, WENG Xue-huang, JIA Li-ming, CHEN Zhong. Transcriptome Sequencing of Male Sterile Buds at Different Developmental Stages in Sapindus mukorossi ‘Qirui’ [J]. Biotechnology Bulletin, 2024, 40(7): 197-206. |
[3] | ZHAO Yao, WEN Lang, LUO Shao-dan, LI Zi-xing, LIU Chao-chao. Identification of HMA Gene Family and Cadmium Transport Function of SlHMA1 in Tomato [J]. Biotechnology Bulletin, 2024, 40(2): 212-222. |
[4] | WANG Nan, LIAO Yong-qin, SHI Zhu-feng, SHEN Yun-xin, YANG Tong-yu, FENG Lu-yao, YI Xiao-peng, TANG Jia-cai, CHEN Qi-bin, YANG Pei-wen. Identification of Three Strains of Bacillus from the Forest Soil of Wuliang Mountain and Mining of Their Bioactivities [J]. Biotechnology Bulletin, 2024, 40(2): 277-288. |
[5] | SHI Jian-lei, ZAI Wen-shan, SU Shi-wen, FU Cun-nian, XIONG Zi-li. Identification and Expression Analysis of miRNA Related to Bacterial Wilt Resistance in Tomato [J]. Biotechnology Bulletin, 2023, 39(5): 233-242. |
[6] | CHE Yong-mei, GUO Yan-ping, LIU Guang-chao, YE Qing, LI Ya-hua, ZHAO Fang-gui, LIU Xin. Isolation and Identification of Bacterial Strain C8 and B4 and Their Halotolerant Growth-promoting Effects and Mechanisms [J]. Biotechnology Bulletin, 2023, 39(5): 276-285. |
[7] | HU Ming-yue, YANG Yu, GUO Yang-dong, ZHANG Xi-chun. Functional Analysis of SlMYB96 Gene in Tomato Under Cold Stress [J]. Biotechnology Bulletin, 2023, 39(4): 236-245. |
[8] | SHEN Yun-xin, SHI Zhu-feng, ZHOU Xu-dong, LI Ming-gang, ZHANG Qing, FENG Lu-yao, CHEN Qi-bin, YANG Pei-wen. Isolation, Identification and Bio-activity of Three Bacillus Strains with Biocontrol Function [J]. Biotechnology Bulletin, 2023, 39(3): 267-277. |
[9] | CHEN Hao-ting, ZHANG Yu-jing, LIU Jie, DAI Ze-min, LIU Wei, SHI Yu, ZHANG Yi, LI Tian-lai. Functional Analysis of WRKY6 Gene in Tomato Under Low-phosphorus Stress [J]. Biotechnology Bulletin, 2023, 39(10): 136-147. |
[10] | MA Xin-xin, XU Yang, ZHAO Huan-huan, HUO Zhao-yan, WANG Shu-bin, ZHONG Feng-lin. Identification of Tomato 4CL Gene Family and Expression Analysis Under Nitrogen Treatment [J]. Biotechnology Bulletin, 2022, 38(4): 163-173. |
[11] | ZHANG Hong-yan, LIN Guo-li, LI Ru-lian, JI Xiao-qi. Screening of Antagonist Against Tomato Fruit Rot and Their Preservation Qualities on Tomato [J]. Biotechnology Bulletin, 2022, 38(3): 69-78. |
[12] | LI Ling, YANG Li-xia, GUO Mei. Function of Transcription Factor CNR in the Ripening Process of Tomato Fruit [J]. Biotechnology Bulletin, 2021, 37(2): 51-62. |
[13] | ZHU Xiao-lin, WEI Xiao-hong, WANG Bao-qiang, WANG Xian, ZHANG Chao-yang. Cloning,Sequence Analysis and Expression Characteristics of Gene Ty-6 Related to Tomato Resistance to Yellow Leaf Curl Disease [J]. Biotechnology Bulletin, 2020, 36(7): 40-47. |
[14] | DU Jian-feng, WU Wei, ZHANG Xiao-ying, LI Yang, DING Xin-hua. Research Progress on the Occurrence and Control of Fusarium Crown and Root Rot of Tomato [J]. Biotechnology Bulletin, 2020, 36(10): 200-206. |
[15] | ZHANG Yuan-yuan, SHAO Dong-nan, CUI Bai-ming. Construction of Processing Tomato α-Man Mutant Based on CRISPR/Cas9 [J]. Biotechnology Bulletin, 2019, 35(6): 9-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||