Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (2): 163-174.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0500
JIA Zi-jian1,2(
), WANG Bao-qiang1,2, CHEN Li-fei1,2, WANG Yi-zhen1,2,3, WEI Xiao-hong1,3, ZHAO Ying1,2(
)
Received:2024-05-28
Online:2025-02-26
Published:2025-02-28
Contact:
ZHAO Ying
E-mail:18210951289@163.com;zhaoy@gsau.edu.cn
JIA Zi-jian, WANG Bao-qiang, CHEN Li-fei, WANG Yi-zhen, WEI Xiao-hong, ZHAO Ying. Expression Patterns of CHX Gene Family in Quinoa in Response to NO under Saline-alkali Stress[J]. Biotechnology Bulletin, 2025, 41(2): 163-174.
| 基因 Gene | 正向引物 Forward primer (5′-3′) | 反向引物 Reverse primer (5′-3′) |
|---|---|---|
| CqCHX-6 | TGACTGGTGTGATTGCTCCC | GTTGCTGGCTTCCAGGAGAT |
| CqCHX-10 | CAGCGCTGGTGATGAGAGAT | TCTTCCTGAGTCGGCAAACC |
| CqCHX-16 | TCCATGTGCATTGCTGTTGC | AGAAGAATCCAGGCTGCCAC |
| CqCHX-17 | GTCCACTTCAGAGCAGACCC | CATCAGGTGCCTTGGAGTGT |
| CqCHX-18 | GTGAGCCAGTGGATGAGCTT | CAAATGCACCGAAAAGGGCA |
| CqCHX-22 | GAACGCTTTGCCAACACCAT | TGATCGCCTTCCTCCCTGTA |
| CqCHX-24 | CAACCTCCACGGGAGTCTTC | GAACACCTCGCTACGACCAA |
| CqCHX-25 | GTTAGCCAAGGCCCCTTCAT | CATGGCCATACGGCCTACAT |
| CqCHX-26 | GGCATCACATTGCCGTTTGT | ATAGAGAGGGCAACCCCCAT |
| CqCHX-48 | GGGTTTACTCGTGCTGGTGA | GGACTAACGCATCCCTAGCC |
| CqTUB-9 | GAGATGTTCCGTCGTGTGAGTGAG | ATCGGCAGTTGCATCCTGGTATTG |
Table 1 RT-qPCR primers for CHX gene family
| 基因 Gene | 正向引物 Forward primer (5′-3′) | 反向引物 Reverse primer (5′-3′) |
|---|---|---|
| CqCHX-6 | TGACTGGTGTGATTGCTCCC | GTTGCTGGCTTCCAGGAGAT |
| CqCHX-10 | CAGCGCTGGTGATGAGAGAT | TCTTCCTGAGTCGGCAAACC |
| CqCHX-16 | TCCATGTGCATTGCTGTTGC | AGAAGAATCCAGGCTGCCAC |
| CqCHX-17 | GTCCACTTCAGAGCAGACCC | CATCAGGTGCCTTGGAGTGT |
| CqCHX-18 | GTGAGCCAGTGGATGAGCTT | CAAATGCACCGAAAAGGGCA |
| CqCHX-22 | GAACGCTTTGCCAACACCAT | TGATCGCCTTCCTCCCTGTA |
| CqCHX-24 | CAACCTCCACGGGAGTCTTC | GAACACCTCGCTACGACCAA |
| CqCHX-25 | GTTAGCCAAGGCCCCTTCAT | CATGGCCATACGGCCTACAT |
| CqCHX-26 | GGCATCACATTGCCGTTTGT | ATAGAGAGGGCAACCCCCAT |
| CqCHX-48 | GGGTTTACTCGTGCTGGTGA | GGACTAACGCATCCCTAGCC |
| CqTUB-9 | GAGATGTTCCGTCGTGTGAGTGAG | ATCGGCAGTTGCATCCTGGTATTG |
重复CHX基因 Duplicated CHX gene | 非同义替换率 Ka | 同义替换率 Ks | 比值 Ka/Ks | 重复CHX基因 Duplicated CHX gene | 非同义替换率 Ka | 同义替换率 Ks | 比值 Ka/Ks |
|---|---|---|---|---|---|---|---|
| CqCHX-1-CqCHX-11 | 0.015 | 0.106 | 0.140 | CqCHX-17-CqCHX-24 | 0.092 | 0.471 | 0.196 |
| CqCHX-2-CqCHX-33 | 0.143 | 0.781 | 0.183 | CqCHX-17-CqCHX-26 | 0.111 | 0.615 | 0.181 |
| CqCHX-4-CqCHX-13 | 0.057 | 0.182 | 0.316 | CqCHX-18-CqCHX-26 | 0.032 | 0.166 | 0.191 |
| CqCHX-4-CqCHX-5 | 0.111 | 0.296 | 0.376 | CqCHX-18-CqCHX-25 | 0.104 | 0.610 | 0.170 |
| CqCHX-6-CqCHX-22 | 0.004 | 0.060 | 0.066 | CqCHX-18-CqCHX-41 | 0.119 | 0.527 | 0.225 |
| CqCHX-7-CqCHX-30 | 0.021 | 0.171 | 0.126 | CqCHX-19-CqCHX-34 | 0.015 | 0.193 | 0.080 |
| CqCHX-8-CqCHX-29 | 0.032 | 0.159 | 0.203 | CqCHX-21-CqCHX-50 | 0.085 | 0.151 | 0.566 |
| CqCHX-9-CqCHX-28 | 0.018 | 0.163 | 0.112 | CqCHX-24-CqCHX-25 | 0.076 | 0.515 | 0.148 |
| CqCHX-14-CqCHX-45 | 0.012 | 0.169 | 0.073 | CqCHX-24-CqCHX-41 | 0.096 | 0.464 | 0.207 |
| CqCHX-15-CqCHX-44 | 0.012 | 0.116 | 0.106 | CqCHX-24-CqCHX-26 | 0.116 | 0.583 | 0.200 |
| CqCHX-16-CqCHX-24 | 0.028 | 0.122 | 0.230 | CqCHX-25-CqCHX-41 | 0.047 | 0.323 | 0.146 |
| CqCHX-16-CqCHX-25 | 0.080 | 0.520 | 0.154 | CqCHX-25-CqCHX-26 | 0.103 | 0.600 | 0.172 |
| CqCHX-16-CqCHX-41 | 0.101 | 0.483 | 0.210 | CqCHX-26-CqCHX-41 | 0.115 | 0.599 | 0.192 |
| CqCHX-17-CqCHX-25 | 0.030 | 0.198 | 0.153 | CqCHX-39-CqCHX-40 | 0.022 | 0.144 | 0.151 |
| CqCHX-17-CqCHX-41 | 0.064 | 0.333 | 0.191 |
Table 2 Gene duplication analysis of CHX gene family in quinoa
重复CHX基因 Duplicated CHX gene | 非同义替换率 Ka | 同义替换率 Ks | 比值 Ka/Ks | 重复CHX基因 Duplicated CHX gene | 非同义替换率 Ka | 同义替换率 Ks | 比值 Ka/Ks |
|---|---|---|---|---|---|---|---|
| CqCHX-1-CqCHX-11 | 0.015 | 0.106 | 0.140 | CqCHX-17-CqCHX-24 | 0.092 | 0.471 | 0.196 |
| CqCHX-2-CqCHX-33 | 0.143 | 0.781 | 0.183 | CqCHX-17-CqCHX-26 | 0.111 | 0.615 | 0.181 |
| CqCHX-4-CqCHX-13 | 0.057 | 0.182 | 0.316 | CqCHX-18-CqCHX-26 | 0.032 | 0.166 | 0.191 |
| CqCHX-4-CqCHX-5 | 0.111 | 0.296 | 0.376 | CqCHX-18-CqCHX-25 | 0.104 | 0.610 | 0.170 |
| CqCHX-6-CqCHX-22 | 0.004 | 0.060 | 0.066 | CqCHX-18-CqCHX-41 | 0.119 | 0.527 | 0.225 |
| CqCHX-7-CqCHX-30 | 0.021 | 0.171 | 0.126 | CqCHX-19-CqCHX-34 | 0.015 | 0.193 | 0.080 |
| CqCHX-8-CqCHX-29 | 0.032 | 0.159 | 0.203 | CqCHX-21-CqCHX-50 | 0.085 | 0.151 | 0.566 |
| CqCHX-9-CqCHX-28 | 0.018 | 0.163 | 0.112 | CqCHX-24-CqCHX-25 | 0.076 | 0.515 | 0.148 |
| CqCHX-14-CqCHX-45 | 0.012 | 0.169 | 0.073 | CqCHX-24-CqCHX-41 | 0.096 | 0.464 | 0.207 |
| CqCHX-15-CqCHX-44 | 0.012 | 0.116 | 0.106 | CqCHX-24-CqCHX-26 | 0.116 | 0.583 | 0.200 |
| CqCHX-16-CqCHX-24 | 0.028 | 0.122 | 0.230 | CqCHX-25-CqCHX-41 | 0.047 | 0.323 | 0.146 |
| CqCHX-16-CqCHX-25 | 0.080 | 0.520 | 0.154 | CqCHX-25-CqCHX-26 | 0.103 | 0.600 | 0.172 |
| CqCHX-16-CqCHX-41 | 0.101 | 0.483 | 0.210 | CqCHX-26-CqCHX-41 | 0.115 | 0.599 | 0.192 |
| CqCHX-17-CqCHX-25 | 0.030 | 0.198 | 0.153 | CqCHX-39-CqCHX-40 | 0.022 | 0.144 | 0.151 |
| CqCHX-17-CqCHX-41 | 0.064 | 0.333 | 0.191 |
Fig. 5 Analysis of CHX gene expression patterns in quinoa under saline-alkali stress (A) and saline-alkali stress+ NO (B) treatmentDifferent lowercase letters indicate the significance at P<0.05 level
| 1 | 李霞, 刘传鑫, 徐彬, 等. 植物拒盐机制的研究进展 [J]. 中国农学通报, 2023, 39(27): 86-94. |
| Li X, Liu CX, Xu B, et al. Plant salt-exclusion mechanism: a review [J]. Chin Agric Sci Bull, 2023, 39(27): 86-94. | |
| 2 | Ismail A, Takeda S, Nick P. Life and death under salt stress: same players, different timing? [J]. J Exp Bot, 2014, 65(12): 2963-2979. |
| 3 | Sewelam N, Oshima Y, Mitsuda N, et al. A step towards understanding plant responses to multiple environmental stresses: a genome-wide study [J]. Plant Cell Environ, 2014, 37(9): 2024-2035. |
| 4 | Teakle NL, Tyerman SD. Mechanisms of Cl- transport contributing to salt tolerance [J]. Plant Cell Environ, 2010, 33(4): 566-589. |
| 5 | Chanroj S, Wang GY, Venema K, et al. Conserved and diversified gene families of monovalent cation/H+ antiporters from algae to flowering plants [J]. Front Plant Sci, 2012, 3: 25. |
| 6 | 刘斌, 周子豪, 杨正利, 等. 茶树CHX基因家族全基因组鉴定及生物信息学分析[J]. 分子植物育种, 2023. . |
| Liu B, Zhou ZH, Yang ZL, et al. Genome-wide identification of CHX gene family in tea plant (Camellia sinensis) and bioinformatics analysi[J]. Mol Plant Breed, 2023. . | |
| 7 | Padmanaban S, Chanroj S, Kwak JM, et al. Participation of endomembrane cation/H+ exchanger AtCHX20 in osmoregulation of guard cells [J]. Plant Physiol, 2007, 144(1): 82-93. |
| 8 | Jia Q, Zheng C, Sun S, et al. The role of plant cation/proton antiporter gene family in salt tolerance [J]. Biol Plant, 2018, 62(4): 617-629. |
| 9 | Guan RX, Qu Y, Guo Y, et al. Salinity tolerance in soybean is modulated by natural variation in GmSALT3 [J]. Plant J, 2014, 80(6): 937-950. |
| 10 | Qi XP, Li MW, Xie M, et al. Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing [J]. Nat Commun, 2014, 5: 4340. |
| 11 | Ren SX, Lyle C, Jiang GL, et al. Soybean salt tolerance 1 (GmST1) reduces ROS production, enhances ABA sensitivity, and abiotic stress tolerance in Arabidopsis thaliana [J]. Front Plant Sci, 2016, 7: 445. |
| 12 | Jia BW, Sun MZ, DuanMu HZ, et al. GsCHX19.3, a member of cation/H+ exchanger superfamily from wild soybean contributes to high salinity and carbonate alkaline tolerance [J]. Sci Rep, 2017, 7(1): 9423. |
| 13 | Qu Y, Guan RX, Bose J, et al. GmSALT3 confers shoot Na+ and Cl- exclusion in soybean via two distinct processes [J]. bioRxiv, 2020. DOI: 10.1101/2020.01.06.896456 . |
| 14 | Isayenkov SV, Maathuis FJM. Plant salinity stress: many unanswered questions remain [J]. Front Plant Sci, 2019, 10: 80. |
| 15 | Hall D, Evans AR, Newbury HJ, et al. Functional analysis of CHX21: a putative sodium transporter in Arabidopsis [J]. J Exp Bot, 2006, 57(5): 1201-1210. |
| 16 | Isayenkov SV, Dabravolski SA, Pan T, et al. Phylogenetic diversity and physiological roles of plant monovalent cation/H+ antiporters [J]. Front Plant Sci, 2020, 11: 573564. |
| 17 | Guo YQ, Zhu CR, Tian ZY. Overexpression of KvCHX enhances salt tolerance in Arabidopsis thaliana seedlings [J]. Curr Issues Mol Biol, 2023, 45(12): 9692-9708. |
| 18 | 杨发荣, 黄杰, 魏玉明, 等. 藜麦生物学特性及应用 [J]. 草业科学, 2017, 34(3): 607-613. |
| Yang FR, Huang J, Wei YM, et al. A review of biological characteristics, applications, and culture of Chenopodium quinoa [J]. Pratacultural Sci, 2017, 34(3): 607-613. | |
| 19 | Vilcacundo R, Hernández-Ledesma B. Nutritional and biological value of quinoa (Chenopodium quinoa Willd.) [J]. Curr Opin Food Sci, 2017, 14: 1-6. |
| 20 | 王艺臻, 丁国栋, 崔欣然, 等. 盐碱复合胁迫对油沙豆生长和光合特性的影响 [J]. 干旱区资源与环境, 2022, 36(5): 146-152. |
| Wang YZ, Ding GD, Cui XR, et al. Effects of saline-alkali stress on the growth and photosynthetic characteristics of Cyperus esculentus and the responses of protective enzymes [J]. J Arid Land Resour Environ, 2022, 36(5): 146-152. | |
| 21 | Jarvis DE, Ho YS, Lightfoot DJ, et al. The genome of Chenopodium quinoa [J]. Nature, 2017, 542(7641): 307-312. |
| 22 | 彭悦, 丁洪霞, 杨博, 等. 藜麦CqNHX基因家族表达与耐盐相关性分析[J/OL]. 分子植物育种, 2023. . |
| Peng Y, Ding HX, Yang B, et al. Identification and expression analysis of CqNHX gene family in quinoa under salt stress [J/OL]. Mol Plant Breed, 2023. . | |
| 23 | 褚晶. 藜麦GST基因家族的鉴定与表达分析及发根农杆菌介导的GST基因功能研究 [D]. 烟台: 烟台大学, 2022. |
| Chu J. Identification and expression analysis of GST gene family in quinoa and study on GST gene function mediated by Agrobacterium rhizogenes [D]. Yantai: Yantai University, 2022. | |
| 24 | Zhu XL, Wang BQ, Wei XH. Identification and expression analysis of the CqSnRK2 gene family and a functional study of the CqSnRK2.12 gene in quinoa (Chenopodium quinoa Willd.) [J]. BMC Genomics, 2022, 23(1): 397. |
| 25 | Sze H, Padmanaban S, Cellier F, et al. Expression patterns of a novel AtCHX gene family highlight potential roles in osmotic adjustment and K+ homeostasis in pollen development [J]. Plant Physiol, 2004, 136(1): 2532-2547. |
| 26 | 贾博为, 金军, 庄齐, 等. 玉米CHX基因家族全基因组鉴定与表达分析 [J]. 黑龙江八一农垦大学学报, 2022, 34(4): 23-30, 64. |
| Jia BW, Jin J, Zhuang Q, et al. Genome-wide identification and expression analysis of maize CHX family [J]. J Heilongjiang Bayi Agric Univ, 2022, 34(4): 23-30, 64. | |
| 27 | 才晓溪, 沈阳, 周伍红, 等. 大豆CHX基因家族全基因组鉴定与生物信息学分析 [J]. 基因组学与应用生物学, 2018, 37(12): 5360-5369. |
| Cai XX, Shen Y, Zhou WH, et al. Genome-wide identification and bioinformatics analysis of soybean CHX gene family [J]. China Ind Econ, 2018, 37(12): 5360-5369. | |
| 28 | Abdullah, Faraji S, Mehmood F, et al. The GASA gene family in cacao (Theobroma cacao, Malvaceae): genome wide identification and expression analysis [J]. Agronomy, 2021, 11(7): 1425. |
| 29 | Musavizadeh Z, Najafi-Zarrini H, Kazemitabar SK, et al. Genome-wide analysis of Potassium channel genes in rice: expression of the OsAKT and OsKAT genes under salt stress [J]. Genes, 2021, 12(5): 784. |
| 30 | Heidari P, Faraji S, Ahmadizadeh M, et al. New insights into structure and function of TIFY genes in Zea mays and Solanum lycopersicum: a genome-wide comprehensive analysis [J]. Front Genet, 2021, 12: 657970. |
| 31 | Faraji S, Heidari P, Amouei H, et al. Investigation and computational analysis of the sulfotransferase (SOT) gene family in potato (Solanum tuberosum): insights into sulfur adjustment for proper development and stimuli responses [J]. Plants, 2021, 10(12): 2597. |
| 32 | 吴彤, 刘云苗, 金军, 等. 蒺藜苜蓿cation/H+ exchanger基因家族鉴定及表达特征分析 [J]. 草业学报, 2022, 31(1): 181-194. |
| Wu T, Liu YM, Jin J, et al. Identification and expression characteristics of a cation/H+ exchanger gene family in Medicago truncatula [J]. Acta Prataculturae Sin, 2022, 31(1): 181-194. | |
| 33 | Pardo JM, Cubero B, Leidi EO, et al. Alkali cation exchangers: roles in cellular homeostasis and stress tolerance [J]. J Exp Bot, 2006, 57(5): 1181-1199. |
| 34 | Haro R, Fraile-Escanciano A, González-Melendi P, et al. The potassium transporters HAK2 and HAK3 localize to endomembranes in Physcomitrella patens. HAK2 is required in some stress conditions [J]. Plant Cell Physiol, 2013, 54(9): 1441-1454. |
| 35 | Sze H, Chanroj S. Plant endomembrane dynamics: studies of K+/H+ antiporters provide insights on the effects of pH and ion homeostasis [J]. Plant Physiol, 2018, 177(3): 875-895. |
| 36 | Song CP, Guo Y, Qiu QS, et al. A probable Na+(K+)/H+ exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana [J]. Proc Natl Acad Sci U S A, 2004, 101(27): 10211-10216. |
| [1] | MA Tian-yi, XU Jia-jia, LU Wen-jing, WU Yan, SHA Wei, ZHANG Mei-juan, PENG Yi-fang. Expression Analysis and Resistance Identification of BrcGASA3 in Chinese Cabbage ‘Jinxiaotong’ Cultivar under Saline-alkali Stress [J]. Biotechnology Bulletin, 2025, 41(2): 127-138. |
| [2] | XU Yuan-meng, MAO Jiao, WANG Meng-yao, WANG Shu, REN Jiang-ling, LIU Yu-han, LIU Si-chen, QIAO Zhi-jun, WANG Rui-yun, CAO Xiao-ning. Cloning and Expression Characteristics Analysis of Millet Genes PmDEP1 and PmEP3 [J]. Biotechnology Bulletin, 2025, 41(2): 150-162. |
| [3] | LI Yu-xin, LI Miao, DU Xiao-fen, HAN Kang-ni, LIAN Shi-chao, WANG Jun. Identification and Expression Analysis of SiSAP Gene Family in Foxtail Millet(Setaria italica) [J]. Biotechnology Bulletin, 2025, 41(1): 143-156. |
| [4] | HE Cai-lin, LU Jing, GUO Hui-hui, LI Xiao-an, WU Qi. Genome-wide Identification and Expression Analysis of the MADS-box Gene Family in Quinoa [J]. Biotechnology Bulletin, 2025, 41(1): 157-172. |
| [5] | WANG Zi-ao, TIAN Rui, CUI Yong-mei, BAI Yi-xiong, YAO Xiao-hua, AN Li-kun, WU Kun-lun. Bioinformatics and Expression Pattern Analysis of HvnJAZ4 Gene in Hulless Barley [J]. Biotechnology Bulletin, 2025, 41(1): 173-185. |
| [6] | KONG Qing-yang, ZHANG Xiao-long, LI Na, ZHANG Chen-jie, ZHANG Xue-yun, YU Chao, ZHANG Qi-xiang, LUO Le. Identification and Expression Analysis of GRAS Transcription Factor Family in Rosa persica [J]. Biotechnology Bulletin, 2025, 41(1): 210-220. |
| [7] | SHEN Peng, GAO Ya-Bin, DING Hong. Identification and Expression Analysis of SAT Gene Family in Potato(Solanum tuberosum L.) [J]. Biotechnology Bulletin, 2024, 40(9): 64-73. |
| [8] | SONG Bing-fang, LIU Ning, CHENG Xin-yan, XU Xiao-bin, TIAN Wen-mao, GAO Yue, BI Yang, WANG Yi. Identification of Potato G6PDH Gene Family and Its Expression Analysis in Damaged Tubers [J]. Biotechnology Bulletin, 2024, 40(9): 104-112. |
| [9] | WU Hui-qin, WANG Yan-hong, LIU Han, SI Zheng, LIU Xue-qing, WANG Jing, YANG Yi, CHENG Yan. Identification and Expression Analysis of UGT Gene Family in Pepper [J]. Biotechnology Bulletin, 2024, 40(9): 198-211. |
| [10] | MAN Quan-cai, MENG Zi-nuo, LI Wei, CAI Xin-ru, SU Run-dong, FU Chang-qing, GAO Shun-juan, CUI Jiang-hui. Identification and Expression Analysis of AQP Gene Family in Potato [J]. Biotechnology Bulletin, 2024, 40(9): 51-63. |
| [11] | WU Juan, WU Xiao-juan, WANG Pei-jie, XIE Rui, NIE Hu-shuai, LI Nan, MA Yan-hong. Screening and Expression Analysis of ERF Gene Related to Anthocyanin Synthesis in Colored Potato [J]. Biotechnology Bulletin, 2024, 40(9): 82-91. |
| [12] | ZHOU Ran, WANG Xing-ping, LI Yan-xia, LUORENG Zhuo-ma. Analysis of LncRNA Differential Expression in Mammary Tissue of Cows with Staphylococcus aureus Mastitis [J]. Biotechnology Bulletin, 2024, 40(8): 320-328. |
| [13] | WU Shuai, XIN Yan-ni, MAI Chun-hai, MU Xiao-ya, WANG Min, YUE Ai-qin, ZHAO Jin-zhong, WU Shen-jie, DU Wei-jun, WANG Li-xiang. Genome-wide Identification and Stress Response Analysis of Soybean GS Gene Family [J]. Biotechnology Bulletin, 2024, 40(8): 63-73. |
| [14] | LIN Tong, YUAN Cheng, DONG Chen-wen-hua, ZENG Meng-qiong, YANG Yan, MAO Zi-chao, LIN Chun. Screening and Functional Analysis of Gene CqSTK Associated with Gametophyte Development of Quinoa [J]. Biotechnology Bulletin, 2024, 40(8): 83-94. |
| [15] | LI Yi-jun, YANG Xiao-bei, XIA Lin, LUO Zhao-peng, XU Xin, YANG Jun, NING Qian-ji, WU Ming-zhu. Cloning and Functional Analysis of NtPRR37 Gene in Nicotiana tabacum L. [J]. Biotechnology Bulletin, 2024, 40(8): 221-231. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||