Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (3): 255-270.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0618
WANG Bin(
), WANG Yu-kun, XIAO Yan-hui(
)
Received:2024-07-01
Online:2025-03-26
Published:2025-03-20
Contact:
XIAO Yan-hui
E-mail:b_wang@sgu.edu.cn;xiaoyanhui-7394@163.com
WANG Bin, WANG Yu-kun, XIAO Yan-hui. Comparative Transcriptomic Analysis of Clove Basil (Ocimum gratissimum) Leaves in Response to Cadmium Stress[J]. Biotechnology Bulletin, 2025, 41(3): 255-270.
基因编号 Gene ID | 正向引物序列 Forward primer sequence (5΄‒3΄) | 反向引物序列 Reverse primer sequence (5΄‒3΄) | 产物长度 Product length/bp |
|---|---|---|---|
| c52549.graph_c0 | ATCGAGCAGAGATGAAGCCG | TTGACGCGCGTGTTTTTCAT | 134 |
| c49765.graph_c0 | AACAAGAGGGCGGAAGGAAG | AGAGAAAGAGGGGCTGTTGC | 73 |
| c57224.graph_c0 | AAGGCGCTGGAATCGGATAG | GCGATTTGCACTCCACGTTT | 125 |
| c59334.graph_c0 | CACAATTCCGATCGCACGAC | TGGCCTCCAAGTTATGCTGG | 71 |
| c51522.graph_c0 | CGGTTCGTCTCCTTGGTGAA | AGTCTCCTCGACCAGCTCAT | 119 |
| c54882.graph_c1 | AGGATGGTGTGAGGAGAGCA | TGCTCAAGTGGAGGATGCAA | 140 |
| Actin7 | GGAGCTCGTCTTTGCTGTCT | GAGCGGGAAATTGTGAGGGA | 90 |
Table 1 Primers used in this study
基因编号 Gene ID | 正向引物序列 Forward primer sequence (5΄‒3΄) | 反向引物序列 Reverse primer sequence (5΄‒3΄) | 产物长度 Product length/bp |
|---|---|---|---|
| c52549.graph_c0 | ATCGAGCAGAGATGAAGCCG | TTGACGCGCGTGTTTTTCAT | 134 |
| c49765.graph_c0 | AACAAGAGGGCGGAAGGAAG | AGAGAAAGAGGGGCTGTTGC | 73 |
| c57224.graph_c0 | AAGGCGCTGGAATCGGATAG | GCGATTTGCACTCCACGTTT | 125 |
| c59334.graph_c0 | CACAATTCCGATCGCACGAC | TGGCCTCCAAGTTATGCTGG | 71 |
| c51522.graph_c0 | CGGTTCGTCTCCTTGGTGAA | AGTCTCCTCGACCAGCTCAT | 119 |
| c54882.graph_c1 | AGGATGGTGTGAGGAGAGCA | TGCTCAAGTGGAGGATGCAA | 140 |
| Actin7 | GGAGCTCGTCTTTGCTGTCT | GAGCGGGAAATTGTGAGGGA | 90 |
Fig. 1 Effects of Cd stress treatment on the growth of clove basilA: Plant height. B: SPAD. C: Fresh weight of aboveground parts. D: Dry weight of aboveground parts. E: Leaf width. F: Leaf length. G: Leaf phenotype. H: Whole plant phenotype. I: Fresh weight of root. J: Dry weight of root. K: Root profile. Different lowercase letters indicate significant differences at P<0.05 level. The same below
序号 No. | 化合物名称 Compound name | 保留时间 Retention time/min | 含量 Content/% | 序号 No. | 化合物名称 Compound name | 保留时间 Retention time/min | 含量 Content/% | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| CK | Cd | CK | Cd | ||||||||
| 1 | 3-己烯醛 3-hexenal | 4.13 | 1.86±0.16* | 0.68±0.04 | 26 | 顺式-肉桂酸甲酯 Methyl cis-cinnamate | 12.00 | - | 5.13±0.26 | ||
| 2 | (E)-2-己烯醛 (E)-2-hexenal | 4.96 | 0.25±0.01* | 0.08±0.00 | 27 | 丁香酚Eugenol | 12.71 | 25.7±1.41* | 0.02±0.01 | ||
| 3 | 顺式-3-己烯醇 Cis-3-hexenol | 5.00 | 1.54±0.41* | 0.14±0.04 | 28 | 肉桂酸甲酯 Methyl ester cinnamic acid | 13.06 | 0.06±0.10 | 58.02±2.02* | ||
| 4 | α-侧柏烯 α-thujene | 6.16 | 0.15±0.02* | 0.06±0.01 | 29 | β-榄香烯 β-elemene | 13.21 | 0.83±0.09* | 0.31±0.04 | ||
| 5 | α-蒎烯 α-pinene | 6.28 | 0.38±0.02* | 0.21±0.01 | 30 | 甲基丁香酚 Methyl eugenol | 13.28 | 6.56±0.14* | 2.04±0.31 | ||
| 6 | 莰烯 Camphene | 6.54 | 0.06±0.01 | 0.02±0.00 | 31 | β-佛手柑油烯 β-bergamotene | 13.49 | 0.10±0.01 | 0.05±0.01 | ||
| 7 | 香桧烯 Sabinene | 6.93 | 0.14±0.01* | 0.08±0.01 | 32 | 石竹烯 Caryophyllene | 13.64 | 0.31±0.02* | 0.16±0.01 | ||
| 8 | β-蒎烯β-pinene | 7.00 | 0.38±0.04* | 0.19±0.01 | 33 | 反式-α-佛手柑油烯 Trans-α-bergamotene | 13.76 | 2.41±0.11 | 2.09±0.05 | ||
| 9 | β-月桂烯 β-myrcene | 7.18 | 0.02±0.01 | 0.10±0.00* | 34 | 顺式-β-金合欢烯Cis-β-farnesene | 13.83 | 0.21±0.02 | 0.08±0.02 | ||
| 10 | D-柠檬烯 D-limonene | 7.83 | 0.32±0.00* | 0.15±0.00 | 35 | 反式-β-金合欢烯 Trans-β-farnesene | 13.95 | 0.29±0.03* | 0.19±0.02 | ||
| 11 | 桉树脑 Eucalyptol | 7.89 | 3.02±0.11* | 1.95±0.09 | 36 | 蛇麻烯 Humulene | 14.08 | 1.27±0.04* | 0.70±0.02 | ||
| 12 | (E)-β-罗勒烯 (E)-β-ocimene | 8.10 | 2.27±0.11* | 1.13±0.02 | 37 | 顺式-4(15),5-依兰油二烯 Cis-muurola-4(15),5-diene | 14.18 | 0.25±0.05* | 0.08±0.01 | ||
| 13 | γ-松油烯 γ-terpinene | 8.30 | 0.40±0.02* | 0.14±0.01 | 38 | 大根香叶烯 D Germacrene D | 14.41 | 2.52±0.04* | 1.18±0.02 | ||
| 14 | 顺式-水合香桧烯Cis-sabinene hydrate | 8.46 | 0.79±0.05* | 0.27±0.01 | 39 | β-环大根香叶烷 β-cyclogermacrane | 14.61 | 1.54±0.09* | 0.4±0.01 | ||
| 15 | 萜品油烯 Terpinolene | 8.78 | 0.14±0.01* | 0.01±0.02 | 40 | δ-愈创木烯 δ-guaiene | 14.69 | 0.21±0.02* | 0.06±0.02 | ||
| 16 | 葑酮 Fenchone | 8.82 | 0.23±0.02 | 0.23±0.05 | 41 | γ-杜松烯 γ-cadinene | 14.80 | 1.07±0.04* | 0.56±0.02 | ||
| 17 | 芳樟醇 Linalool | 8.92 | 12.10±0.51* | 4.15±0.19 | 42 | β-倍半水芹烯 β-sesquiphellandrene | 14.86 | 0.11±0.03 | 0.06±0.01 | ||
| 18 | (+)-2-莰酮 (+)-2-bornanone | 9.71 | 0.85±0.03* | 0.25±0.01 | 43 | α-杜松烯 α-cadinene | 15.01 | 0.09±0.02 | 0.03±0.00 | ||
| 19 | 新薄荷醇 Neo-menthol | 9.97 | 0.12±0.01* | 0.03±0.00 | 44 | 反式-橙花叔醇 Trans-nerolidol | 15.28 | 0.41±0.21* | 0.06±0.00 | ||
| 20 | δ-松油醇 δ-terpineol | 10.02 | 0.09±0.01 | 0.04±0.00 | 45 | 表荜澄茄油烯醇 Epicubenol | 16.03 | 0.20±0.02* | 0.08±0.01 | ||
| 21 | 4-萜品醇 L-terpinen-4-ol | 10.17 | 4.46±0.76* | 2.65±0.12 | 46 | τ-杜松醇 τ-cadinol | 16.31 | 2.36±0.04* | 0.98±0.02 | ||
| 22 | L-α-松油醇 L-α-terpineol | 10.36 | 1.35±0.10* | 0.68±0.02 | 47 | 吲哚-3-乙醛 Indole-3-acetaldehyde | 16.96 | 0.08±0.03 | - | ||
| 23 | 4-烯丙基苯甲醚 Estragole | 10.46 | 20.50±1.47* | 13.9±2.26 | 48 | 新植二烯 Neophytadiene | 18.29 | 0.69±0.10* | 0.31±0.03 | ||
| 24 | 乙酸辛酯 Octyl ester acetic acid | 10.57 | 0.32±0.04* | 0.16±0.03 | 49 | n-十六酸 n-hexadecanoic acid | 19.46 | 0.18±0.01* | 0.08±0.00 | ||
| 25 | 3-乙烯基-4-甲基-1H- 吡咯-2,5-二酮 3-ethenyl-4-methyl-1H-pyrrole-2,5-dione | 11.25 | 0.17±0.01* | 0.05±0.00 | 合计 Total amount/% | 99.67 | 99.91 | ||||
Table 2 Volatile compounds and their contents in clove basil leaves
序号 No. | 化合物名称 Compound name | 保留时间 Retention time/min | 含量 Content/% | 序号 No. | 化合物名称 Compound name | 保留时间 Retention time/min | 含量 Content/% | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| CK | Cd | CK | Cd | ||||||||
| 1 | 3-己烯醛 3-hexenal | 4.13 | 1.86±0.16* | 0.68±0.04 | 26 | 顺式-肉桂酸甲酯 Methyl cis-cinnamate | 12.00 | - | 5.13±0.26 | ||
| 2 | (E)-2-己烯醛 (E)-2-hexenal | 4.96 | 0.25±0.01* | 0.08±0.00 | 27 | 丁香酚Eugenol | 12.71 | 25.7±1.41* | 0.02±0.01 | ||
| 3 | 顺式-3-己烯醇 Cis-3-hexenol | 5.00 | 1.54±0.41* | 0.14±0.04 | 28 | 肉桂酸甲酯 Methyl ester cinnamic acid | 13.06 | 0.06±0.10 | 58.02±2.02* | ||
| 4 | α-侧柏烯 α-thujene | 6.16 | 0.15±0.02* | 0.06±0.01 | 29 | β-榄香烯 β-elemene | 13.21 | 0.83±0.09* | 0.31±0.04 | ||
| 5 | α-蒎烯 α-pinene | 6.28 | 0.38±0.02* | 0.21±0.01 | 30 | 甲基丁香酚 Methyl eugenol | 13.28 | 6.56±0.14* | 2.04±0.31 | ||
| 6 | 莰烯 Camphene | 6.54 | 0.06±0.01 | 0.02±0.00 | 31 | β-佛手柑油烯 β-bergamotene | 13.49 | 0.10±0.01 | 0.05±0.01 | ||
| 7 | 香桧烯 Sabinene | 6.93 | 0.14±0.01* | 0.08±0.01 | 32 | 石竹烯 Caryophyllene | 13.64 | 0.31±0.02* | 0.16±0.01 | ||
| 8 | β-蒎烯β-pinene | 7.00 | 0.38±0.04* | 0.19±0.01 | 33 | 反式-α-佛手柑油烯 Trans-α-bergamotene | 13.76 | 2.41±0.11 | 2.09±0.05 | ||
| 9 | β-月桂烯 β-myrcene | 7.18 | 0.02±0.01 | 0.10±0.00* | 34 | 顺式-β-金合欢烯Cis-β-farnesene | 13.83 | 0.21±0.02 | 0.08±0.02 | ||
| 10 | D-柠檬烯 D-limonene | 7.83 | 0.32±0.00* | 0.15±0.00 | 35 | 反式-β-金合欢烯 Trans-β-farnesene | 13.95 | 0.29±0.03* | 0.19±0.02 | ||
| 11 | 桉树脑 Eucalyptol | 7.89 | 3.02±0.11* | 1.95±0.09 | 36 | 蛇麻烯 Humulene | 14.08 | 1.27±0.04* | 0.70±0.02 | ||
| 12 | (E)-β-罗勒烯 (E)-β-ocimene | 8.10 | 2.27±0.11* | 1.13±0.02 | 37 | 顺式-4(15),5-依兰油二烯 Cis-muurola-4(15),5-diene | 14.18 | 0.25±0.05* | 0.08±0.01 | ||
| 13 | γ-松油烯 γ-terpinene | 8.30 | 0.40±0.02* | 0.14±0.01 | 38 | 大根香叶烯 D Germacrene D | 14.41 | 2.52±0.04* | 1.18±0.02 | ||
| 14 | 顺式-水合香桧烯Cis-sabinene hydrate | 8.46 | 0.79±0.05* | 0.27±0.01 | 39 | β-环大根香叶烷 β-cyclogermacrane | 14.61 | 1.54±0.09* | 0.4±0.01 | ||
| 15 | 萜品油烯 Terpinolene | 8.78 | 0.14±0.01* | 0.01±0.02 | 40 | δ-愈创木烯 δ-guaiene | 14.69 | 0.21±0.02* | 0.06±0.02 | ||
| 16 | 葑酮 Fenchone | 8.82 | 0.23±0.02 | 0.23±0.05 | 41 | γ-杜松烯 γ-cadinene | 14.80 | 1.07±0.04* | 0.56±0.02 | ||
| 17 | 芳樟醇 Linalool | 8.92 | 12.10±0.51* | 4.15±0.19 | 42 | β-倍半水芹烯 β-sesquiphellandrene | 14.86 | 0.11±0.03 | 0.06±0.01 | ||
| 18 | (+)-2-莰酮 (+)-2-bornanone | 9.71 | 0.85±0.03* | 0.25±0.01 | 43 | α-杜松烯 α-cadinene | 15.01 | 0.09±0.02 | 0.03±0.00 | ||
| 19 | 新薄荷醇 Neo-menthol | 9.97 | 0.12±0.01* | 0.03±0.00 | 44 | 反式-橙花叔醇 Trans-nerolidol | 15.28 | 0.41±0.21* | 0.06±0.00 | ||
| 20 | δ-松油醇 δ-terpineol | 10.02 | 0.09±0.01 | 0.04±0.00 | 45 | 表荜澄茄油烯醇 Epicubenol | 16.03 | 0.20±0.02* | 0.08±0.01 | ||
| 21 | 4-萜品醇 L-terpinen-4-ol | 10.17 | 4.46±0.76* | 2.65±0.12 | 46 | τ-杜松醇 τ-cadinol | 16.31 | 2.36±0.04* | 0.98±0.02 | ||
| 22 | L-α-松油醇 L-α-terpineol | 10.36 | 1.35±0.10* | 0.68±0.02 | 47 | 吲哚-3-乙醛 Indole-3-acetaldehyde | 16.96 | 0.08±0.03 | - | ||
| 23 | 4-烯丙基苯甲醚 Estragole | 10.46 | 20.50±1.47* | 13.9±2.26 | 48 | 新植二烯 Neophytadiene | 18.29 | 0.69±0.10* | 0.31±0.03 | ||
| 24 | 乙酸辛酯 Octyl ester acetic acid | 10.57 | 0.32±0.04* | 0.16±0.03 | 49 | n-十六酸 n-hexadecanoic acid | 19.46 | 0.18±0.01* | 0.08±0.00 | ||
| 25 | 3-乙烯基-4-甲基-1H- 吡咯-2,5-二酮 3-ethenyl-4-methyl-1H-pyrrole-2,5-dione | 11.25 | 0.17±0.01* | 0.05±0.00 | 合计 Total amount/% | 99.67 | 99.91 | ||||
样品编号 Sample No. | Clean reads | GC含量 GC content/% | ≥Q30/% | 比对读数 Mapped reads | 比对比率 Mapped ratio/% |
|---|---|---|---|---|---|
| 0 h CK-1 | 22 830 057 | 49.84 | 93.02 | 17 200 093 | 75.34 |
| 0 h CK-2 | 22 391 222 | 49.80 | 92.93 | 17 070 648 | 76.24 |
| 0 h CK-3 | 21 181 042 | 50.05 | 93.88 | 16 240 183 | 76.67 |
| 24 h CK-1 | 21 485 915 | 50.28 | 93.29 | 16 070 383 | 74.79 |
| 24 hCK-2 | 21 898 153 | 50.27 | 93.37 | 16 540 511 | 75.53 |
| 24 h CK-3 | 21 872 539 | 50.81 | 93.37 | 16 650 456 | 76.12 |
| 72 h CK-1 | 22 127 839 | 49.96 | 93.08 | 16 819 392 | 76.01 |
| 72 h CK-2 | 20 937 711 | 50.20 | 93.83 | 15 897 564 | 75.93 |
| 72 h CK-3 | 19 962 929 | 50.29 | 93.46 | 15 148 810 | 75.88 |
| 24 h Cd-1 | 25 353 059 | 49.97 | 93.80 | 19 449 566 | 76.71 |
| 24 h Cd-2 | 20 283 780 | 49.74 | 93.89 | 15 626 179 | 77.04 |
| 24 h Cd-3 | 20 638 087 | 49.93 | 93.68 | 15 794 277 | 76.53 |
| 72 h Cd-1 | 20 774 226 | 49.12 | 93.32 | 15 927 385 | 76.67 |
| 72 h Cd-2 | 26 674 376 | 48.82 | 92.73 | 19 912 643 | 74.65 |
| 72 h Cd-3 | 22 262 126 | 48.62 | 93.14 | 16 647 781 | 74.78 |
Table 3 Evaluation and comparison of sequencing data and assembly results
样品编号 Sample No. | Clean reads | GC含量 GC content/% | ≥Q30/% | 比对读数 Mapped reads | 比对比率 Mapped ratio/% |
|---|---|---|---|---|---|
| 0 h CK-1 | 22 830 057 | 49.84 | 93.02 | 17 200 093 | 75.34 |
| 0 h CK-2 | 22 391 222 | 49.80 | 92.93 | 17 070 648 | 76.24 |
| 0 h CK-3 | 21 181 042 | 50.05 | 93.88 | 16 240 183 | 76.67 |
| 24 h CK-1 | 21 485 915 | 50.28 | 93.29 | 16 070 383 | 74.79 |
| 24 hCK-2 | 21 898 153 | 50.27 | 93.37 | 16 540 511 | 75.53 |
| 24 h CK-3 | 21 872 539 | 50.81 | 93.37 | 16 650 456 | 76.12 |
| 72 h CK-1 | 22 127 839 | 49.96 | 93.08 | 16 819 392 | 76.01 |
| 72 h CK-2 | 20 937 711 | 50.20 | 93.83 | 15 897 564 | 75.93 |
| 72 h CK-3 | 19 962 929 | 50.29 | 93.46 | 15 148 810 | 75.88 |
| 24 h Cd-1 | 25 353 059 | 49.97 | 93.80 | 19 449 566 | 76.71 |
| 24 h Cd-2 | 20 283 780 | 49.74 | 93.89 | 15 626 179 | 77.04 |
| 24 h Cd-3 | 20 638 087 | 49.93 | 93.68 | 15 794 277 | 76.53 |
| 72 h Cd-1 | 20 774 226 | 49.12 | 93.32 | 15 927 385 | 76.67 |
| 72 h Cd-2 | 26 674 376 | 48.82 | 92.73 | 19 912 643 | 74.65 |
| 72 h Cd-3 | 22 262 126 | 48.62 | 93.14 | 16 647 781 | 74.78 |
数据库 Database | 注释的 基因数量 Annotated number | 长度在300‒1 000 bp的基因数量 300≤length<1 000 bp | 长度大于1 000 bp的基因数量 Length≥1 000 bp |
|---|---|---|---|
| COG | 9 606 | 2 703 | 5 395 |
| GO | 33 653 | 11 607 | 14 274 |
| KEGG | 26 168 | 8 557 | 12 005 |
| KOG | 21 510 | 6 891 | 9 885 |
| Pfam | 26 052 | 8 169 | 13 479 |
| Swissprot | 26 681 | 8 889 | 12 403 |
| TrEMBL | 39 794 | 14 047 | 16 646 |
| eggnog | 33 797 | 11 675 | 14 801 |
| NR | 40 191 | 14 083 | 16 642 |
注释的基因总数 All annotated genes | 41 060 | 14 425 | 16 718 |
Table 4 Statistics table of unigene annotation
数据库 Database | 注释的 基因数量 Annotated number | 长度在300‒1 000 bp的基因数量 300≤length<1 000 bp | 长度大于1 000 bp的基因数量 Length≥1 000 bp |
|---|---|---|---|
| COG | 9 606 | 2 703 | 5 395 |
| GO | 33 653 | 11 607 | 14 274 |
| KEGG | 26 168 | 8 557 | 12 005 |
| KOG | 21 510 | 6 891 | 9 885 |
| Pfam | 26 052 | 8 169 | 13 479 |
| Swissprot | 26 681 | 8 889 | 12 403 |
| TrEMBL | 39 794 | 14 047 | 16 646 |
| eggnog | 33 797 | 11 675 | 14 801 |
| NR | 40 191 | 14 083 | 16 642 |
注释的基因总数 All annotated genes | 41 060 | 14 425 | 16 718 |
Fig. 3 Sample correlation analysis and overall gene expressionA: Heat map of correlation analysis for varying samples. B: Overall gene expression abundance of varying samples
Fig. 5 Comparative transcriptomic analysis of Cd stress treatment at 24 hA: Volcano plot. B: KEGG enrichment analysis of all differentially expressed genes (DEGs). C: KEGG enrichment analysis of upregulated DEGs. D: KEGG enrichment analysis of downregulated DEGs, the same below
Fig. 7 Weighted gene co-expression network analysisA: Dendrogram of clustered representative gene modules. B: Correlation analysis between modules and traits. C: Heatmap of gene expression in the lightcyan1 module. D: Correlation of module and gene expression within the lightcyan1.E: KEGG enrichment analysis of genes in the lightcyan1 module
Fig. 8 Functional analysis of differentially expressed genes induced by Cd stressA: Venn diagram. B: KEGG enrichment analysis of differentially expressed genes (DEGs) upregulated at both 24 h and 72 h. C: KEGG enrichment analysis of DEGs upregulated only at 24 h. D: KEGG enrichment analysis of DEGs upregulated solely at 72 h
Fig. 9 Transcription factors induced by Cd stress and the expression patterns of five bHLH genes during Cd stress durationA: Transcription factor types. B-F: 5 bHLH genes induced by Cd stress (gene IDs orderly is c51250.graph_c0, c51522.graph_c0, c54831.graph_c0, c56571.graph_c1, and c57229.graph_c0)
| 1 | 綦峥, 齐越, 杨红, 等. 土壤重金属镉污染现状、危害及治理措施 [J]. 食品安全质量检测学报, 2020, 11(7): 2286-2294. |
| Qi Z, Qi Y, Yang H, et al. Status, harm and treatment measures of heavy metal cadmium pollution in soil [J]. J Food Saf Qual, 2020, 11(7): 2286-2294. | |
| 2 | Satarug S, Baker JR, Urbenjapol S, et al. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population [J]. Toxicol Lett, 2003, 137(1/2): 65-83. |
| 3 | 陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析 [J]. 农业环境科学学报, 2017, 36(9): 1689-1692. |
| Chen NC, Zheng YJ, He XF, et al. Analysis of the report on the national general survey of soil contamination [J]. J Agro Environ Sci, 2017, 36(9): 1689-1692. | |
| 4 | Gavrilescu M. Enhancing phytoremediation of soils polluted with heavy metals [J]. Curr Opin Biotechnol, 2022, 74: 21-31. |
| 5 | Wang B, Lin LN, Yuan X, et al. Low-level cadmium exposure induced hormesis in peppermint young plant by constantly activating antioxidant activity based on physiological and transcriptomic analyses [J]. Front Plant Sci, 2023, 14: 1088285. |
| 6 | Wang B, Wang YK, Yuan X, et al. Comparative transcriptomic analysis provides key genetic resources in clove basil (Ocimum gratissimum) under cadmium stress [J]. Front Genet, 2023, 14: 1224140. |
| 7 | 郭向阳. 6种食用芳香植物挥发性成分的GC-MS/GC-O分析 [J]. 农业工程学报, 2019, 35(18): 299-307. |
| Guo XY. Analysis of volatile compositions in six edible fragrant plants by GC-MS/GC-O technology [J]. Trans Chin Soc Agric Eng, 2019, 35(18): 299-307. | |
| 8 | Hu ZY, Zhang YF, He Y, et al. Full-length transcriptome assembly of Italian ryegrass root integrated with RNA-seq to identify genes in response to plant cadmium stress [J]. Int J Mol Sci, 2020, 21(3): 1067. |
| 9 | Feng SJ, Shen YH, Xu HN, et al. RNA-seq identification of Cd responsive transporters provides insights into the association of oxidation resistance and Cd accumulation in Cucumis sativus L [J]. Antioxidants (Basel), 2021, 10(12): 1973. |
| 10 | He F, Liu QQ, Zheng L, et al. RNA-seq analysis of rice roots reveals the involvement of post-transcriptional regulation in response to cadmium stress [J]. Front Plant Sci, 2015, 6: 1136. |
| 11 | Li YK, Ding LH, Zhou M, et al. Transcriptional regulatory network of plant cadmium stress response [J]. Int J Mol Sci, 2023, 24(5): 4378. |
| 12 | 张晓娜, 朴春兰, 董友魁, 等. 大豆根系应答重金属Cd胁迫的转录组分析 [J]. 应用生态学报, 2017, 28(5): 1633-1641. |
| Zhang XN, Piao CL, Dong YK, et al. Transcriptome analysis of response to heavy metal Cd stress in soybean root [J]. Chin J Appl Ecol, 2017, 28(5): 1633-1641. | |
| 13 | Liu ZC, Zhou LZ, Gan CC, et al. Transcriptomic analysis reveals key genes and pathways corresponding to Cd and Pb in the hyperaccumulator Arabis paniculata [J]. Ecotoxicol Environ Saf, 2023, 254: 114757. |
| 14 | 肖艳辉, 李应文, 邹碧, 等. 钝化剂抑制南方污染农田籽粒苋吸收重金属的效应研究 [J]. 生态环境学报, 2021, 30(4): 825-833. |
| Xiao YH, Li YW, Zou B, et al. Reduction of heavy metal uptake by amaranth by 3 soil amendments in contaminated farmland of South China [J]. Ecol Environ Sci, 2021, 30(4): 825-833. | |
| 15 | 王斌, 袁晓, 蒋园园, 等. bHLH96的克隆及其在薄荷萜烯生物合成调控中的功能 [J]. 生物技术通报, 2024, 40(1): 281-293. |
| Wang B, Yuan X, Jiang YY, et al. Cloning of bHLH96 gene and its roles in regulating the biosynthesis of peppermint terpenes [J]. Biotechnol Bull, 2024, 40(1): 281-293. | |
| 16 | Geng YY, Qin LK, Liu YN, et al. Ultrastructure observation and transcriptome analysis of Chinese chestnut (Castanea mollissima Blume) seeds in response to water loss [J]. Food Biosci, 2021, 42: 101095. |
| 17 | Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method [J]. Nat Protoc, 2008, 3(6): 1101-1108. |
| 18 | Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis [J]. BMC Bioinformatics, 2008, 9: 559. |
| 19 | 宋琳, 刘梦宇, 周航, 等. 镉砷胁迫下玉米幼苗的生理响应和抗氧化系统特征 [J]. 农业环境科学学报, 2024, 43(4): 752-762. |
| Song L, Liu MY, Zhou H, et al. Physiological response and antioxidant system characteristics of maize (Zea mays L.) seedlings under cadmium and arsenic stress [J]. J Agro Environ Sci, 2024, 43(4): 752-762. | |
| 20 | Xu J, Yin HX, Liu XJ, et al. Salt affects plant Cd-stress responses by modulating growth and Cd accumulation [J]. Planta, 2010, 231(2): 449-459. |
| 21 | 张慧, 张欣雨, 袁旭, 等. 烟草叶片响应镉胁迫的差异表达基因鉴定及分析 [J]. 作物学报, 2024, 50(4): 944-956. |
| Zhang H, Zhang XY, Yuan X, et al. Transcriptome analysis of tobacco in response to cadmium stress [J]. Acta Agron Sin, 2024, 50(4): 944-956. | |
| 22 | Yan JY, Wu XZ, Li T, et al. Effect and mechanism of nano-materials on plant resistance to cadmium toxicity: a review [J]. Ecotoxicol Environ Saf, 2023, 266: 115576. |
| 23 | Khanna K, Kohli SK, Ohri P, et al. Agroecotoxicological aspect of Cd in soil-plant system: uptake, translocation and amelioration strategies [J]. Environ Sci Pollut Res Int, 2022, 29(21): 30908-30934. |
| 24 | Yu XF, Liu YJ, Yang L, et al. Low concentrations of methyl jasmonate promote plant growth and mitigate Cd toxicity in Cosmos bipinnatus [J]. BMC Plant Biol, 2024, 24(1): 807. |
| 25 | 李源恒, 赵春莉, 郭宏亮, 等. 镉胁迫对黄秋英生理及富集特性的影响 [J]. 山东农业科学, 2024, 56(1): 81-90. |
| Li YH, Zhao CL, Guo HL, et al. Effects of cadmium stress on physiological and enrichment characteristics of Cosmos sulphureus [J]. Shandong Agric Sci, 2024, 56(1): 81-90. | |
| 26 | Tong WY, Ahmad Rafiee AR, Leong CR, et al. Development of sodium alginate-pectin biodegradable active food packaging film containing cinnamic acid [J]. Chemosphere, 2023, 336: 139212. |
| 27 | Barroso JP, de Almeida AA F, do Nascimento JL, et al. The damage caused by Cd toxicity to photosynthesis, cellular ultrastructure, antioxidant metabolism, and gene expression in young cacao plants are mitigated by high Mn doses in soil [J]. Environ Sci Pollut Res Int, 2023, 30(54): 115646-115665. |
| 28 | Kou M, Xiong J, Li M, et al. Interactive effects of Cd and Pb on the photosynthesis efficiency and antioxidant defense system of Capsicum annuum L [J]. Bull Environ Contam Toxicol, 2022, 108(5): 917-925. |
| 29 | Wang SQ, Dai HP, Cui S, et al. The effects of salinity and pH variation on hyperaccumulator Bidens pilosa L. accumulating cadmium with dynamic and real-time uptake of Cd2+ influx around its root apexes [J]. Environ Sci Pollut Res Int, 2023, 30(14): 41435-41444. |
| 30 | 刘琛, 林义成, 郭彬, 等. 丛枝菌根真菌通过改变植物基因表达水平和微生物群落结构促进红叶石楠对镉的吸收 [J]. 生物工程学报, 2022, 38(1): 287-302. |
| Liu C, Lin YC, Guo B, et al. Arbuscular mycorrhizal fungi enhanced cadmium uptake in Photinia frase through altering root transcriptomes and root-associated microbial communities [J]. Chin J Biotechnol, 2022, 38(1): 287-302. | |
| 31 | Khan A, Jie Z, Kong XJ, et al. Pre treatment of melatonin rescues cotton seedlings from cadmium toxicity by regulating key physio-biochemical and molecular pathways [J]. J Hazard Mater, 2023, 445: 130530. |
| 32 | Li X, Xu B, Sahito ZA, et al. Transcriptome analysis reveals cadmium exposure enhanced the isoquinoline alkaloid biosynthesis and disease resistance in Coptis chinensis [J]. Ecotoxicol Environ Saf, 2024, 271: 115940. |
| 33 | Song L, Huang SSC, Wise A, et al. A transcription factor hierarchy defines an environmental stress response network [J]. Science, 2016, 354(6312): aag1550. |
| 34 | Zhang HW, Lu LL. Transcription factors involved in plant responses to cadmium-induced oxidative stress [J]. Front Plant Sci, 2024, 15: 1397289. |
| 35 | Khan I, Asaf S, Jan R, et al. Genome-wide annotation and expression analysis of WRKY and bHLH transcriptional factor families reveal their involvement under cadmium stress in tomato (Solanum lycopersicum L.) [J]. Front Plant Sci, 2023, 14: 1100895. |
| 36 | Yao YN, He ZQ, Li XM, et al. Genome-wide identification of bHLH gene family and its response to cadmium stress in Populus × canescens [J]. PeerJ, 2024, 12: e17410. |
| 37 | Du XY, Fang LH, Li JX, et al. The TabHLH094-TaMYC8 complex mediates the cadmium response in wheat [J]. Mol Breed, 2023, 43(7): 57. |
| [1] | WU Xia-ming, YANG Min, ZHOU Chen-ping, KUANG Rui-bin, LIU Chuan-he, HE Han, XU Ze, WEI Yue-rong. Effects of Different Concentrations of Melatonin on the Physiological Characteristics of Strawberry Seedlings under High-temperature Stress [J]. Biotechnology Bulletin, 2025, 41(3): 181-189. |
| [2] | LI Xu-juan, LI Chun-jia, LIU Hong-bo, XU Chao-hua, LIN Xiu-qin, LU Xin, LIU Xin-long. Transcriptome Analysis of Axillary Bud Formation and Development in Sugarcane [J]. Biotechnology Bulletin, 2025, 41(3): 202-218. |
| [3] | LIU Jie, WANG Fei, TAO Ting, ZHANG Yu-jing, CHEN Hao-ting, ZHANG Rui-xing, SHI Yu, ZHANG Yi. Overexpression of SlWRKY41 Improves the Tolerance of Tomato Seedlings to Drought [J]. Biotechnology Bulletin, 2025, 41(2): 107-118. |
| [4] | YUE Li-xin, WANG Qing-hua, LIU Ze-zhou, KONG Su-ping, GAO Li-min. Screening Genes Related to Male Sterile in Welsh Onion(Allium fistulosum L.) Based on Transcriptomic Profiling and WGCNA [J]. Biotechnology Bulletin, 2024, 40(9): 212-224. |
| [5] | LI Yu-qing, WU Nan, LUO Jian-rang. Cloning and Functional Analysis of bHLH Gene Related to Anthocyanin Synthesis in Paeonia qiui [J]. Biotechnology Bulletin, 2024, 40(8): 174-185. |
| [6] | QIN Jian, LI Zhen-yue, HE Lang, LI Jun-ling, ZHANG Hao, DU Rong. Change of Single-cell Transcription Profile and Analysis of Intercellular Communication in Myogenic Cell Differentiation [J]. Biotechnology Bulletin, 2024, 40(6): 330-342. |
| [7] | WANG Bin, YUAN Xiao, JIANG Yuan-yuan, WANG Yu-kun, XIAO Yan-hui, HE Jin-ming. Cloning of bHLH96 Gene and Its Roles in Regulating the Biosynthesis of Peppermint Terpenes [J]. Biotechnology Bulletin, 2024, 40(1): 281-293. |
| [8] | LOU Hui, ZHU Jin-cheng, YANG Yang, ZHANG Wei. Effects of Root Exudates in Resistant and Susceptible Varieties of Cotton on the Growths and Gene Expressions of Fusarium oxysporum [J]. Biotechnology Bulletin, 2023, 39(9): 156-167. |
| [9] | YANG Zhi-xiao, HOU Qian, LIU Guo-quan, LU Zhi-gang, CAO Yi, GOU Jian-yu, WANG Yi, LIN Ying-chao. Responses of Rubisco and Rubisco Activase in Different Resistant Tobacco Strains to Brown Spot Stress [J]. Biotechnology Bulletin, 2023, 39(9): 202-212. |
| [10] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
| [11] | LYU Qiu-yu, SUN Pei-yuan, RAN Bin, WANG Jia-rui, CHEN Qing-fu, LI Hong-you. Cloning, Subcellular Localization and Expression Analysis of the Transcription Factor Gene FtbHLH3 in Fagopyrum tataricum [J]. Biotechnology Bulletin, 2023, 39(8): 194-203. |
| [12] | LIU Bao-cai, CHEN Jing-ying, ZHANG Wu-jun, HUANG Ying-zhen, ZHAO Yun-qing, LIU Jian-chao, WEI Zhi-cheng. Characteristics Analysis of Seed Microrhizome Gene Expression of Polygonatum cyrtonema [J]. Biotechnology Bulletin, 2023, 39(8): 220-233. |
| [13] | YU Hui, WANG Jing, LIANG Xin-xin, XIN Ya-ping, ZHOU Jun, ZHAO Hui-jun. Isolation and Functional Verification of Genes Responding to Iron and Cadmium Stresses in Lycium barbarum [J]. Biotechnology Bulletin, 2023, 39(7): 195-205. |
| [14] | YANG Yang, ZHU Jin-cheng, LOU Hui, HAN Ze-gang, ZHANG Wei. Transcriptome Analysis of Interaction Between Gossypium barbadense and Fusarium oxysporum f. sp. vasinfectum [J]. Biotechnology Bulletin, 2023, 39(6): 259-273. |
| [15] | LIU Hui, LU Yang, YE Xi-miao, ZHOU Shuai, LI Jun, TANG Jian-bo, CHEN En-fa. Comparative Transcriptome Analysis of Cadmium Stress Response Induced by Exogenous Sulfur in Tartary Buckwheat [J]. Biotechnology Bulletin, 2023, 39(5): 177-191. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||