Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (2): 107-118.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0688
LIU Jie(
), WANG Fei, TAO Ting, ZHANG Yu-jing, CHEN Hao-ting, ZHANG Rui-xing, SHI Yu(
), ZHANG Yi(
)
Received:2024-07-17
Online:2025-02-26
Published:2025-02-28
Contact:
SHI Yu, ZHANG Yi
E-mail:19834544664@163.com;ayu-shi@163.com;harmony1228@163.com
LIU Jie, WANG Fei, TAO Ting, ZHANG Yu-jing, CHEN Hao-ting, ZHANG Rui-xing, SHI Yu, ZHANG Yi. Overexpression of SlWRKY41 Improves the Tolerance of Tomato Seedlings to Drought[J]. Biotechnology Bulletin, 2025, 41(2): 107-118.
| 引物名称Primer name | 引物序列Primer sequence(5′-3′) |
|---|---|
| SlActin-F | ACCACTGAGCACAATGTTACCG |
| SlActin-R | GTCCTCTTCCAGCCATCCA |
| SlWRKY41-F | GGCTTGAAGGTCCATGTGAAGATG |
| SlWRKY41-R | ACCCCTGTGTGTTCCTATGAGTAC |
| SlSOD-F | AATTCATCATTGTGGCAGCA |
| SlSOD-R | GCCCTTAAGGACAGCAACAG |
| SlPOD-F | GGTCCAACATGGCAAGTTCT |
| SlPOD-R | ACATCTTGCCCTTCCAAATG |
| SlP5CS1-F | TGATGGAAGATTAGCACTTGGAA |
| SlP5CS1-R | CAACACCTACAGCACCAGAA |
Table 1 Primer sequences for RT-qPCR
| 引物名称Primer name | 引物序列Primer sequence(5′-3′) |
|---|---|
| SlActin-F | ACCACTGAGCACAATGTTACCG |
| SlActin-R | GTCCTCTTCCAGCCATCCA |
| SlWRKY41-F | GGCTTGAAGGTCCATGTGAAGATG |
| SlWRKY41-R | ACCCCTGTGTGTTCCTATGAGTAC |
| SlSOD-F | AATTCATCATTGTGGCAGCA |
| SlSOD-R | GCCCTTAAGGACAGCAACAG |
| SlPOD-F | GGTCCAACATGGCAAGTTCT |
| SlPOD-R | ACATCTTGCCCTTCCAAATG |
| SlP5CS1-F | TGATGGAAGATTAGCACTTGGAA |
| SlP5CS1-R | CAACACCTACAGCACCAGAA |
Fig. 1 Genetic transformation of SlWRKY41-transgenic tomato plants and PCR and RT-qPCR detection of transgenic tomato plantsA: Preparation of exosomes. B: Differentiation of healing tissues. C: Generation of resistant buds. D: Rooting culture. E: SlWRKY41 transgenic tomato genomic DNA PCR assay for the T1 generation. M: DNA maker DL2000; 1: negative control; 2: wild-type plants; 3-8: SlWRKY41 transgenic lines; 9: plasmid control. F: RT-qPCR detection of WRKY41 expression in T2 generation transgenic tomato plants, and the different lowercase letters indicate significant levels of difference among treatments(P<0.05), the same below
Fig. 2 Phenotypic observations of wild-type and SlWRKY41-overexpressed plants under drought stressOE-WRKY41 from left to right is OE-WRKY41-1,and OE-1WRKY41-2
处理 Treatment | 株高 Plant height/cm | 茎粗 Stem diameter/mm | 地上鲜重Shoot fresh weight/g | 地下鲜重 Root fresh weight/g | 地上干重Shoot dry weight/g | 地下干重 Root dry weight/g | 总干重 Total dry weight/g | 总鲜重 Total fresh weight/g |
|---|---|---|---|---|---|---|---|---|
| WT | 8.61±0.72b | 3.53±0.17b | 4.30±0.26b | 1.34±0.10b | 0.29±0.07b | 0.07±0.01b | 5.64±0.31b | 0.36±0.07b |
| OE-WRKY41-1 | 11.33±0.77a | 4.33±0.32a | 6.28±0.13a | 2.74±0.18a | 0.40±0.03a | 0.13±0.01a | 9.03±0.22a | 0.53±0.03a |
| OE-WRKY41-2 | 11.60±0.33a | 4.35±0.29a | 6.66±0.35a | 2.42±0.40a | 0.40±0.04a | 0.13±0.01a | 9.08±0.69a | 0.52±0.05a |
Table 2 Effects of drought stress on the biomasses of tomato seedlings overexpressing SlWRKY41
处理 Treatment | 株高 Plant height/cm | 茎粗 Stem diameter/mm | 地上鲜重Shoot fresh weight/g | 地下鲜重 Root fresh weight/g | 地上干重Shoot dry weight/g | 地下干重 Root dry weight/g | 总干重 Total dry weight/g | 总鲜重 Total fresh weight/g |
|---|---|---|---|---|---|---|---|---|
| WT | 8.61±0.72b | 3.53±0.17b | 4.30±0.26b | 1.34±0.10b | 0.29±0.07b | 0.07±0.01b | 5.64±0.31b | 0.36±0.07b |
| OE-WRKY41-1 | 11.33±0.77a | 4.33±0.32a | 6.28±0.13a | 2.74±0.18a | 0.40±0.03a | 0.13±0.01a | 9.03±0.22a | 0.53±0.03a |
| OE-WRKY41-2 | 11.60±0.33a | 4.35±0.29a | 6.66±0.35a | 2.42±0.40a | 0.40±0.04a | 0.13±0.01a | 9.08±0.69a | 0.52±0.05a |
处理 Treatment | 根长 Root length/cm | 根系表面积 Root surface area/cm2 | 根平均直径 Mean root diameter/mm | 根系体积 Root volume/ cm3 | 根尖数 Root tips | 根分叉数 Root forks | 交叉数 Root crosses |
|---|---|---|---|---|---|---|---|
| WT | 87.99±6.63b | 13.00±1.09b | 0.23±0.03b | 0.77±0.08b | 1 974.33±222.06b | 6 319.33±382.89b | 1 663.67±228.40b |
| OE-WRKY41-1 | 106.08±7.25a | 17.25±1.54a | 0.36±0.04a | 1.68±0.58a | 2 733.67±316.79a | 8 052.33±494.69a | 2 269.67±112.97a |
| OE-WRKY41-2 | 106.61±2.60a | 17.83±0.68a | 0.35±0.02a | 1.72±0.41a | 2 704.67±97.57a | 8 347.00±644.94a | 2 250.67±159.14a |
Table 3 Effects of drought stress on the root system indexes of tomato seedlings overexpressing SlWRKY41
处理 Treatment | 根长 Root length/cm | 根系表面积 Root surface area/cm2 | 根平均直径 Mean root diameter/mm | 根系体积 Root volume/ cm3 | 根尖数 Root tips | 根分叉数 Root forks | 交叉数 Root crosses |
|---|---|---|---|---|---|---|---|
| WT | 87.99±6.63b | 13.00±1.09b | 0.23±0.03b | 0.77±0.08b | 1 974.33±222.06b | 6 319.33±382.89b | 1 663.67±228.40b |
| OE-WRKY41-1 | 106.08±7.25a | 17.25±1.54a | 0.36±0.04a | 1.68±0.58a | 2 733.67±316.79a | 8 052.33±494.69a | 2 269.67±112.97a |
| OE-WRKY41-2 | 106.61±2.60a | 17.83±0.68a | 0.35±0.02a | 1.72±0.41a | 2 704.67±97.57a | 8 347.00±644.94a | 2 250.67±159.14a |
Fig. 4 Effects of drought stress on the relative electrical conductivity and relative water content in the leaves of tomato seedlings overexpressing SlWRKY41
Fig. 5 Effects of drought stress on malondialdehyde, reactive oxygen species content and antioxidant enzyme activities in the leaves of tomato seedlings overexpressing SlWRKY41
| 1 | 王丽, 刘洋, 李德全. 植物干旱胁迫信号转导及其调控机制研究进展 [J]. 生物技术通报, 2012, 28(10): 1-7. |
| Wang L, Liu Y, Li DQ. Drought stress signal transduction and regulation mechanism in plants [J]. Biotechnol Bull, 2012, 28(10): 1-7. | |
| 2 | Li QQ, Ye AZ, Wada Y, et al. Climate change leads to an expansion of global drought-sensitive area [J]. J Hydrol, 2024, 632: 130874. |
| 3 | Wang TT, Sun FB. Socioeconomic exposure to drought under climate warming and globalization: the importance of vegetation-CO2 feedback [J]. Int J Climatol, 2023, 43(12): 5778-5796. |
| 4 | 陈兰兰, 王丽, 吴亚娟, 等. 植物响应干旱胁迫的分子和微生态机制 [J/OL]. 分子植物育种, 2023, 1-15. . |
| Chen LL, Wang L, Wu YJ, et al. Molecular and microecological mechanisms of plant responses to drought stress [J/OL]. Molecular Plant Breeding, 2023, 1-15. . | |
| 5 | Zia R, Nawaz MS, Siddique MJ, et al. Plant survival under drought stress: implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation [J]. Microbiol Res, 2021, 242: 126626. |
| 6 | 王凯悦, 陈芳泉, 黄五星. 植物干旱胁迫响应机制研究进展 [J]. 中国农业科技导报, 2019, 21(2): 19-25. |
| Wang KY, Chen FQ, Huang WX. Research advance on drought stress response mechanism in plants [J]. J Agric Sci Technol, 2019, 21(2): 19-25. | |
| 7 | Zhang PF, Zhang ZR, Xiao ML, et al. Effects of organic mulching on moisture and temperature of soil in greenhouse production of tomato under unheated greenhouse cultivation in the cold zone of China [J]. Food Sci Nutr, 2023, 11(8): 4829-4842. |
| 8 | Fang YJ, Zheng YQ, Lu W, et al. Roles of miR319-regulated TCPs in plant development and response to abiotic stress [J]. Crop J, 2021, 9(1): 17-28. |
| 9 | Rushton PJ, Somssich IE, Ringler P, et al. WRKY transcription factors [J]. Trends Plant Sci, 2010, 15(5): 247-258. |
| 10 | 卢珍红, 原晓龙, 李绅崇, 等. 非洲菊对隐地疫霉侵染响应WRKY转录因子的鉴定及表达分析 [J]. 分子植物育种, 2023, 1-10. |
| Lu ZH, Yuan XL, Li SC, et al. Identification and expression analysis of gerbera jamesonii WRKY transcription factors related to phytophthora cryptogea stress [J]. Molecular Plant Breeding, 2023, 1-10. | |
| 11 | Garneau MG, Tan QM, Tegeder M. Function of pea amino acid permease AAP6 in nodule nitrogen metabolism and export, and plant nutrition [J]. J Exp Bot, 2018, 69(21): 5205-5219. |
| 12 | Song H, Wang PF, Hou L, et al. Global analysis of WRKY genes and their response to dehydration and salt stress in soybean [J]. Front Plant Sci, 2016, 7: 9. |
| 13 | Li SL, Khoso MA, Wu J, et al. Exploring the mechanisms of WRKY transcription factors and regulated pathways in response to abiotic stress [J]. Plant Stress, 2024, 12: 100429. |
| 14 | Li HE, Xu Y, Xiao Y, et al. Expression and functional analysis of two genes encoding transcription factors, VpWRKY1 and VpWRKY2, isolated from Chinese wild Vitis pseudoreticulata [J]. Planta, 2010, 232(6): 1325-1337. |
| 15 | Wang F, Chen HW, Li QT, et al. GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants [J]. Plant J, 2015, 83(2): 224-236. |
| 16 | Jiang YJ, Liang G, Yu DQ. Activated expression of WRKY57 confers drought tolerance in Arabidopsis [J]. Mol Plant, 2012, 5(6): 1375-1388. |
| 17 | Tang LL, Cai H, Zhai H, et al. Overexpression of Glycine soja WRKY20 enhances both drought and salt tolerance in transgenic alfalfa (Medicago sativa L.) [J]. Plant Cell Tissue Organ Cult PCTOC, 2014, 118(1): 77-86. |
| 18 | Shui DJ, Sun J, Xiong ZL, et al. Comparative identification of WRKY transcription factors and transcriptional response to Ralstonia solanacearum in tomato [J]. Gene, 2024, 912: 148384. |
| 19 | 魏娟娟, 杨伟, 潘宇, 等. 番茄WRKY41基因的克隆、表达分析与转基因植株的获得 [J]. 西南大学学报: 自然科学版, 2017, 39(1): 46-54. |
| Wei JJ, Yang W, Pan Y, et al. Cloning and expression analysis of a WRKY41 gene in tomato and its transfer into a tomato cultivar [J]. J Southwest Univ Nat Sci Ed, 2017, 39(1): 46-54. | |
| 20 | 陈浩婷, 张玉静, 刘洁, 等. 低磷胁迫下番茄转录因子WRKY6功能分析 [J]. 生物技术通报, 2023, 39(10): 136-147. |
| Chen HT, Zhang YJ, Liu J, et al. Functional analysis of WRKY6 gene in tomato under low-phosphorus stress [J]. Biotechnol Bull, 2023, 39(10): 136-147. | |
| 21 | 梁爽. 钙抑制剂对盐胁迫条件下植物丙二醛含量及营养结构的影响 [D]. 长春: 长春师范大学, 2016. |
| Liang S. Effects of calcium inhibitors on malondialdehyde content and nutritional structure of plants under salt stress [D]. Changchun: Changchun Normal University, 2016. | |
| 22 | 高俊凤. 植物生理学实验指导 [M]. 北京: 高等教育出版社, 2006. |
| Gao JF. Experimental guidance for plant physiology [M]. Beijing: Higher Education Press, 2006. | |
| 23 | Gong HJ, Zhu XY, Chen KM, et al. Silicon alleviates oxidative damage of wheat plants in pots under drought [J]. Plant Sci, 2005, 169(2): 313-321. |
| 24 | 王云霞, 刘莹, 付雨辰, 等. 干旱胁迫对连翘幼苗非结构性碳分配和水力特性的影响 [J]. 生态学报, 2024, 44(11): 4698-4707. |
| Wang YX, Liu Y, Fu YC, et al. Effects of drought stress on unstructured carbon allocation and hydraulic characteristics of Forsythia suspense seedlings [J]. Acta Ecol Sin, 2024, 44(11): 4698-4707. | |
| 25 | 姜玉, 张苗, 汤静, 等. 冷激结合水杨酸处理对黄瓜果实冷害及能量和脯氨酸代谢的影响 [J]. 核农学报, 2021, 35(1): 128-137. |
| Jiang Y, Zhang M, Tang J, et al. Effects of cold shock combined with salicylic acid treatment on chilling injury, energy and proline metabolism of postharvest cucumber fruit [J]. J Nucl Agric Sci, 2021, 35(1): 128-137. | |
| 26 | Razifard H, Ramos A, Della Valle AL, et al. Genomic evidence for complex domestication history of the cultivated tomato in Latin America [J]. Mol Biol Evol, 2020, 37(4): 1118-1132. |
| 27 | 范舒雅. 外源硒提高番茄干旱和盐胁迫抗性的生理机制研究 [D]. 杨凌:西北农林科技大学, 2023. |
| Fan SY. Study on physiological mechanisms for exogenous selenium-mediated drought and salt tolerance in tomato[D]. Yangling: Northwest A&F University, 2023. | |
| 28 | 丁红, 张智猛, 戴良香, 等. 不同抗旱性花生品种的根系形态发育及其对干旱胁迫的响应 [J]. 生态学报, 2013, 33(17): 5169-5176. |
| Ding H, Zhang ZM, Dai LX, et al. Responses of root morphology of peanut varieties differing in drought tolerance to water-deficient stress [J]. Acta Ecol Sin, 2013, 33(17): 5169-5176. | |
| 29 | Jung H, Chung PJ, Park SH, et al. Overexpression of OsERF48 causes regulation of OsCML16, a calmodulin-like protein gene that enhances root growth and drought tolerance [J]. Plant Biotechnol J, 2017, 15(10): 1295-1308. |
| 30 | 李文娆, 张岁岐, 丁圣彦, 等. 干旱胁迫下紫花苜蓿根系形态变化及与水分利用的关系 [J]. 生态学报, 2010, 30(19): 5140-5150. |
| Li WR, Zhang SQ, Ding SY, et al. Root morphological variation and water use in alfalfa under drought stress [J]. Acta Ecol Sin, 2010, 30(19): 5140-5150. | |
| 31 | 刘波, 池明, 曹梦琦, 等. 过表达马铃薯StuPPO9基因对烟草抗旱能力的影响 [J]. 作物学报, 2024, 50(9): 2237-2247. |
| Liu B, Chi M, Cao MQ, et al. Impact of potato StuPPO9 gene overexpression on drought resistance in Nicotiana benthamiana [J]. Acta Agron Sin, 2024, 50(9): 2237-2247. | |
| 32 | Song JW, Xin L, Gao FK, et al. Effects of foliar selenium application on oxidative damage and photosynthetic properties of greenhouse tomato under drought stress [J]. Plants (Basel), 2024, 13(2): 302. |
| 33 | Luan YT, Chen ZJ, Fang ZW, et al. PoWRKY71 is involved in Paeonia ostii resistance to drought stress by directly regulating light-harvesting chlorophyll a/b-binding 151 gene [J]. Hortic Res, 2023, 10(11): uhad194. |
| 34 | 吴一鸣, 崔会婷, 张昆, 等. 两种白颖苔草对梯度NaCl胁迫的生理生化响应及综合评价 [J]. 草地学报, 2024, 32(3): 736-745. |
| Wu YM, Cui HT, Zhang K, et al. Physiological, biochemical responses and comprehensive evaluation of two Carex rigescens varieties in response to gradient NaCl stress [J]. Acta Agrestia Sin, 2024, 32(3): 736-745. | |
| 35 | 徐子涵, 刘倩, 苗大鹏, 等. 春兰miR396过表达对拟南芥叶片生长、光合及叶绿素荧光特性的影响 [J]. 生物技术通报, 2021, 37(5): 28-37. |
| Xu ZH, Liu Q, Miao DP, et al. Impacts of Cymbidium goeringii's miR396 overexpression on the leaf growth, photosynthesis and chlorophyll fluorescence in Arabidopsis thaliana [J]. Biotechnol Bull, 2021, 37(5): 28-37. | |
| 36 | 高琦, 刘亚敏, 刘玉民, 等. 外源调节物质对干旱胁迫红椿苗木形态及光合生理的影响 [J]. 西北农林科技大学学报: 自然科学版, 2024, 52(7): 53-63. |
| Gao Q, Liu YM, Liu YM, et al. Effects of exogenous substances on morphology and photosynthetic physiology of To ona Ciliata seedlings under drought stress [J]. J Northwest A F Univ Nat Sci Ed, 2024, 52(7): 53-63. | |
| 37 | Mittler R. Oxidative stress, antioxidants and stress tolerance [J]. Trends Plant Sci, 2002, 7(9): 405-410. |
| 38 | 李格, 孟小庆, 蔡敬, 等. 活性氧在植物非生物胁迫响应中功能的研究进展 [J]. 植物生理学报, 2018, 54(6): 951-959. |
| Li G, Meng XQ, Cai J, et al. Advances in the function of reactive oxygen species in plant responses to abiotic stresses [J]. Plant Physiol J, 2018, 54(6): 951-959. | |
| 39 | Ran C, Gulaqa A, Zhu J, et al. Benefits of biochar for improving ion contents, cell membrane permeability, leaf water status and yield of rice under saline-sodic paddy field condition [J]. J Plant Growth Regul, 2020, 39(1): 370-377. |
| 40 | 刘佳, 王少鹏, 史昆, 等. 紫花苜蓿MsMYB58基因克隆及抗旱功能鉴定 [J]. 草地学报, 2023, 31(12): 3608-3616. |
| Liu J, Wang SP, Shi K, et al. Cloning and function identification of MsMYB58 in alfalfa under drought stress [J]. Acta Agrestia Sin, 2023, 31(12): 3608-3616. | |
| 41 | 张玲, 麻冬梅, 刘晓霞, 等. 根灌外源褪黑素对干旱胁迫下紫花苜蓿生理特性的影响研究 [J]. 草地学报, 2024, 32(1): 198-206. |
| Zhang L, Ma DM, Liu XX, et al. The effects of exogenous melatonin on seedling physiological characteristics of alfalfa under drought stress [J]. Acta Agrestia Sin, 2024, 32(1): 198-206. | |
| 42 | Zhao J, Zhang XM, Guo RR, et al. Over-expression of a grape WRKY transcription factor gene, VlWRKY48, in Arabidopsis thaliana increases disease resistance and drought stress tolerance [J]. Plant Cell Tissue Organ Cult, 2018, 132(2): 359-370. |
| 43 | 叶博予, 李雪芹, 池艺, 等. 高温胁迫对山核桃光合作用和抗氧化系统的影响 [J]. 分子植物育种, 2024, 22(12): 4018-4024. |
| Ye BY, Li XQ, Chi Y, et al. Effects of high temperature stress on photosynthesis and antioxidant system of Carya cathayensis [J]. Mol Plant Breed, 2024, 22(12): 4018-4024. | |
| 44 | 杜清洁, 周璐瑶, 杨思震, 等. 过表达CaCP1提高转基因烟草对盐胁迫的敏感性 [J]. 生物技术通报, 2023, 39(2): 172-182. |
| Du QJ, Zhou LY, Yang SZ, et al. Overexpression of CaCP1 enhances salt stress sensibility in transgenic tobacco [J]. Biotechnol Bull, 2023, 39(2): 172-182. | |
| 45 | 丁凯鑫, 王立春, 田国奎, 等. 外源烯效唑对干旱胁迫下马铃薯叶片抗氧化能力及渗透调节的影响 [J]. 核农学报, 2024, 38(1): 169-178. |
| Ding KX, Wang LC, Tian GK, et al. Effect of exogenous uniconazole on antioxidant capacity and osmotic adjustment of potato leaves under drought stress [J]. J Nucl Agric Sci, 2024, 38(1): 169-178. | |
| 46 | Zhu D, Che YM, Xiao PL, et al. Functional analysis of a grape WRKY30 gene in drought resistance [J]. Plant Cell Tissue Organ Cult, 2018, 132(3): 449-459. |
| 47 | 陈光, 李佳, 杜瑞英, 等. pOsHAK1: OsFLN2提高水稻的糖代谢水平和抗旱性 [J]. 生物技术通报, 2022, 38(8): 92-100. |
| Chen G, Li J, Du RY, et al. pOsHAK1: OsFLN2 expression enhances the drought tolerance by altering sugar metabolism in rice [J]. Biotechnol Bull, 2022, 38(8): 92-100. | |
| 48 | 刘燕, 张凌楠, 刘晓宏, 等. 干旱胁迫植物个体生理响应及其生态模型预测研究进展 [J]. 生态学报, 2023, 43(24): 10042-10053. |
| Liu Y, Zhang LN, Liu XH, et al. Research progress from individual plant physiological response to ecological model prediction under drought stress [J]. Acta Ecol Sin, 2023, 43(24): 10042-10053. | |
| 49 | Ahammed GJ, Li X, Wan HJ, et al. SlWRKY81 reduces drought tolerance by attenuating proline biosynthesis in tomato [J]. Sci Hortic, 2020, 270: 109444. |
| [1] | KONG Qing-yang, ZHANG Xiao-long, LI Na, ZHANG Chen-jie, ZHANG Xue-yun, YU Chao, ZHANG Qi-xiang, LUO Le. Identification and Expression Analysis of GRAS Transcription Factor Family in Rosa persica [J]. Biotechnology Bulletin, 2025, 41(1): 210-220. |
| [2] | LIU Wen-zhi, HE Dan, LI Peng, FU Ying-lin, ZHANG Yi-xin, WEN Hua-jie, YU Wen-qing. Paenibacillus polymyxa New Strain X-11 and Its Growth-promoting Effects on Tomato and Rice [J]. Biotechnology Bulletin, 2024, 40(9): 249-259. |
| [3] | HAN Kai, ZHOU Yong-shun, ZHANG Kai-yue, WANG Lu, GAO Jian-feng, CHEN Fu-long. Evaluation of Drought Resistance of Three Chlorella Strains [J]. Biotechnology Bulletin, 2024, 40(8): 244-254. |
| [4] | YANG Wei, ZHAO Li-fen, TANG Bing, ZHOU Lin-bi, YANG Juan, MO Chuan-yuan, ZHANG Bao-hui, LI Fei, RUAN Song-lin, DENG Ying. Genome-wide Identification and Expression Analysis of the SRO Gene Family in Brassica juncea L. [J]. Biotechnology Bulletin, 2024, 40(8): 129-141. |
| [5] | ZHANG Di, JU Rui, LI Li-mei, WANG Yu-qian, CHEN Rui, WANG Xin-yi. Application of Transcription Factor-based Biosensors in Environmental Analysis [J]. Biotechnology Bulletin, 2024, 40(6): 114-125. |
| [6] | HU Ya-dan, WU Guo-qiang, LIU Chen, WEI Ming. Roles of MYB Transcription Factor in Regulating the Responses of Plants to Stress [J]. Biotechnology Bulletin, 2024, 40(6): 5-22. |
| [7] | WANG Di ZHANG Xiao-yu SONG Yu-xin ZHENG Dong-ran TIAN Jing LI Yu-hua WANG Yu WU Hao. Advances in the Molecular Mechanisms of Plant Tissue Culture and Regeneration Regulated by Totipotency-related Transcription Factors [J]. Biotechnology Bulletin, 2024, 40(6): 23-33. |
| [8] | WEN Jie, DU Yuan-xin, WU An-bo, YANG Guang-rong, LU Min, AN Hua-ming, NAN Hong. Identification and Expression Pattern Analysis of Rosa roxburghii SOD Gene Family [J]. Biotechnology Bulletin, 2024, 40(5): 153-166. |
| [9] | GUO Chun, SONG Gui-mei, YAN Yan, DI Peng, WANG Ying-ping. Genome Wide Identification and Expression Analysis of the bZIP Gene Family in Panax quinquefolius [J]. Biotechnology Bulletin, 2024, 40(4): 167-178. |
| [10] | ZHOU Hong-dan, LUO Xiao-ping, TU Mi-xue, LI Zhong-guang. Phytomelatonin: An Emerging Signal Molecule Responding to Abiotic Stress [J]. Biotechnology Bulletin, 2024, 40(3): 41-51. |
| [11] | ZHAO Yao, WEN Lang, LUO Shao-dan, LI Zi-xing, LIU Chao-chao. Identification of HMA Gene Family and Cadmium Transport Function of SlHMA1 in Tomato [J]. Biotechnology Bulletin, 2024, 40(2): 212-222. |
| [12] | WANG Nan, LIAO Yong-qin, SHI Zhu-feng, SHEN Yun-xin, YANG Tong-yu, FENG Lu-yao, YI Xiao-peng, TANG Jia-cai, CHEN Qi-bin, YANG Pei-wen. Identification of Three Strains of Bacillus from the Forest Soil of Wuliang Mountain and Mining of Their Bioactivities [J]. Biotechnology Bulletin, 2024, 40(2): 277-288. |
| [13] | SUN Mei-hua, SUN Hui-xian, TIAN Lin-lin, MIAO Yan-xiu, HOU Lei-ping, QI Ming-fang, LI Tian-lai. Functional Identification of YABBY2b Gene and Expression Analysis of Downstream Genes in Tomato [J]. Biotechnology Bulletin, 2024, 40(11): 162-168. |
| [14] | CHEN Zhi-min, LI Cui, WEI Ji-tian, LI Xin-ran, LIU Yi, GUO Qiang. Research Progress in the Regulation of Chlorogenic Acid Biosynthesis and Its Application [J]. Biotechnology Bulletin, 2024, 40(1): 57-71. |
| [15] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||