Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (10): 62-75.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0620
Previous Articles Next Articles
CHEN Meng-jiao1,2(), LI Yang-yang2,3,4, WU Qian2()
Received:
2024-07-01
Online:
2024-10-26
Published:
2024-11-20
Contact:
WU Qian
E-mail:2021204030@stu.njau.edu.cn;wuqian01@caas.cn
CHEN Meng-jiao, LI Yang-yang, WU Qian. Research Advances in Plant Growth and Stress Response Regulation Mediated by Glutamate Receptor-like Proteins[J]. Biotechnology Bulletin, 2024, 40(10): 62-75.
Fig. 1 Protein structural and sequence characteristics of plant GLRs A: The topological structure of plant glutamate receptor proteins. ATD: Amino-terminal domain; LBD: ligand-binding domain; TMD: transmembrane domain; CTD: carboxy-terminal domain; S1: segment 1; S2: segment 2; GSH: glutathione; M1, M3, M4: transmembrane-spanning domains 1, 3, 4; M2: partial transmembrane domain M2. Some of the reported functional sites are labeled. B: Sequence alignment of the partial M3 region of glutamate receptor. The aligned sequences are from model plant Arabidopsis thaliana(At), Physcomitrella patens(Pp), Marchantina polymorpha(Mp), Adiantum capillus-vigor(Ac), Ginkgo biloba(Gb), Oryza sativa(Os), and Homo sapiens(Hs). C: Reported plant glutamate receptor protein ligands and their binding sites
类别 Group | 物种 Species | GLRs数量 Number of GLRs | GLRs各分支数量Number of GLRs in each clades | 参考文献 Reference | ||||
---|---|---|---|---|---|---|---|---|
GLR0 | GLR1 | GLR2 | GLR3 | GLR4 | ||||
藻类植物Algae | 莱茵衣藻Chlamydomonas rheinhardtii | 1 | 1 | 0 | 0 | 0 | 0 | [ |
苔藓植物Bryophytes | 地钱Marchantia polymorpha | 1 | 0 | 0 | 0 | 1 | 0 | [ |
小立碗藓Physcomitrella patens | 2 | 0 | 0 | 0 | 2 | 0 | [ | |
蕨类植物Pteridophyte | 江南卷柏Selaginella moellendorffii | 2 | 0 | 0 | 0 | 2 | 0 | [ |
裸子植物Gymnosperm | 银杏Ginkgo biloba | 9 | 0 | 0 | 0 | 9 | 0 | [ |
双子叶植物Eudicots | 大豆Glycine max | 31 | 0 | 0 | 13 | 18 | 0 | [ |
番茄Solanum lycopersicum | 13 | 0 | 2 | 6 | 5 | 0 | [ | |
葡萄Vitis vinifera | 11 | 0 | 1 | 5 | 5 | 0 | [ | |
拟南芥Arabidopsis thaliana | 20 | 0 | 4 | 9 | 7 | 0 | [ | |
野草莓Fragaria vesca | 36 | 0 | 3 | 23 | 2 | 8 | [ | |
桃Prunus persica | 40 | 0 | 6 | 14 | 12 | 8 | [ | |
梅Prunus mume | 34 | 0 | 5 | 14 | 7 | 8 | [ | |
单子叶植物Monocots | 水稻Oryza sativa | 13 | 0 | 4 | 4 | 4 | 1 | [ |
玉米Zea mays | 17 | 0 | 0 | 7 | 10 | 0 | [ | |
甜根子草Saccharum spontaneum | 22 | 0 | 1 | 14 | 7 | 0 | [ |
Table 1 Clades and numbers of GLR family members in some published species
类别 Group | 物种 Species | GLRs数量 Number of GLRs | GLRs各分支数量Number of GLRs in each clades | 参考文献 Reference | ||||
---|---|---|---|---|---|---|---|---|
GLR0 | GLR1 | GLR2 | GLR3 | GLR4 | ||||
藻类植物Algae | 莱茵衣藻Chlamydomonas rheinhardtii | 1 | 1 | 0 | 0 | 0 | 0 | [ |
苔藓植物Bryophytes | 地钱Marchantia polymorpha | 1 | 0 | 0 | 0 | 1 | 0 | [ |
小立碗藓Physcomitrella patens | 2 | 0 | 0 | 0 | 2 | 0 | [ | |
蕨类植物Pteridophyte | 江南卷柏Selaginella moellendorffii | 2 | 0 | 0 | 0 | 2 | 0 | [ |
裸子植物Gymnosperm | 银杏Ginkgo biloba | 9 | 0 | 0 | 0 | 9 | 0 | [ |
双子叶植物Eudicots | 大豆Glycine max | 31 | 0 | 0 | 13 | 18 | 0 | [ |
番茄Solanum lycopersicum | 13 | 0 | 2 | 6 | 5 | 0 | [ | |
葡萄Vitis vinifera | 11 | 0 | 1 | 5 | 5 | 0 | [ | |
拟南芥Arabidopsis thaliana | 20 | 0 | 4 | 9 | 7 | 0 | [ | |
野草莓Fragaria vesca | 36 | 0 | 3 | 23 | 2 | 8 | [ | |
桃Prunus persica | 40 | 0 | 6 | 14 | 12 | 8 | [ | |
梅Prunus mume | 34 | 0 | 5 | 14 | 7 | 8 | [ | |
单子叶植物Monocots | 水稻Oryza sativa | 13 | 0 | 4 | 4 | 4 | 1 | [ |
玉米Zea mays | 17 | 0 | 0 | 7 | 10 | 0 | [ | |
甜根子草Saccharum spontaneum | 22 | 0 | 1 | 14 | 7 | 0 | [ |
Fig. 2 Regulatory roles and mechanism of GLRs in plant growth and stress response A: A summary of the functions of different GLR members in plant growth and stress responses. B: Schematic diagram showing the possible mechanism of GLR actions. Upon external stimuli, GLR channels are open, resulting in the increase of cytosolic calcium levels and the activation of downstream responses
[1] | Lam HM, Chiu J, Hsieh MH, et al. Glutamate-receptor genes in plants[J]. Nature, 1998, 396: 125-126. |
[2] |
De Bortoli S, Teardo E, Szabò I, et al. Evolutionary insight into the ionotropic glutamate receptor superfamily of photosynthetic organisms[J]. Biophys Chem, 2016, 218: 14-26.
doi: S0301-4622(16)30184-3 pmid: 27586818 |
[3] | Simon AA, Navarro-Retamal C, Feijó JA. Merging signaling with structure: functions and mechanisms of plant glutamate receptor ion channels[J]. Annu Rev Plant Biol, 2023, 74: 415-452. |
[4] |
Traynelis SF, Wollmuth LP, McBain CJ, et al. Glutamate receptor ion channels: structure, regulation, and function[J]. Pharmacol Rev, 2010, 62(3): 405-496.
doi: 10.1124/pr.109.002451 pmid: 20716669 |
[5] |
Hansen KB, Wollmuth LP, Bowie D, et al. Structure, function, and pharmacology of glutamate receptor ion channels[J]. Pharmacol Rev, 2021, 73(4): 298-487.
doi: 10.1124/pharmrev.120.000131 pmid: 34753794 |
[6] | Qi Z, Stephens NR, Spalding EP. Calcium entry mediated by GLR3.3, an Arabidopsis glutamate receptor with a broad agonist profile[J]. Plant Physiol, 2006, 142(3): 963-971. |
[7] | Wudick MM, Portes MT, Michard E, et al. CORNICHON sorting and regulation of GLR channels underlie pollen tube Ca2+ homeostasis[J]. Science, 2018, 360(6388): 533-536. |
[8] | Mou WS, Kao YT, Michard E, et al. Ethylene-independent signaling by the ethylene precursor ACC in Arabidopsis ovular pollen tube attraction[J]. Nat Commun, 2020, 11(1): 4082. |
[9] | Green MN, Gangwar SP, Michard E, et al. Structure of the Arabidopsis thaliana glutamate receptor-like channel GLR3.4[J]. Mol Cell, 2021, 81(15): 3216-3226.e8. |
[10] | Alfieri A, Doccula FG, Pederzoli R, et al. The structural bases for agonist diversity in an Arabidopsis thaliana glutamate receptor-like channel[J]. Proc Natl Acad Sci U S A, 2020, 117(1): 752-760. |
[11] |
Gangwar SP, Green MN, Michard E, et al. Structure of the Arabidopsis glutamate receptor-like channel GLR3.2 ligand-binding domain[J]. Structure, 2021, 29(2): 161-169.e4.
doi: 10.1016/j.str.2020.09.006 pmid: 33027636 |
[12] | Shao QL, Gao QF, Lhamo D, et al. Two glutamate- and pH-regulated Ca2+ channels are required for systemic wound signaling in Arabidopsis[J]. Sci Signal, 2020, 13(640): eaba1453. |
[13] |
何明洁, 孙伊辰, 程晓园, 等. 植物谷氨酸受体的研究进展[J]. 植物学报, 2016, 51(6): 827-840.
doi: 10.11983/CBB15212 |
He MJ, Sun YC, Cheng XY, et al. Current research advances on glutamate receptors(GLRs)in plants[J]. Chin Bull Bot, 2016, 51(6): 827-840. | |
[14] | Grenzi M, Bonza MC, Costa A. Signaling by plant glutamate receptor-like channels: what else![J]. Curr Opin Plant Biol, 2022, 68: 102253. |
[15] | Yu B, Liu N, Tang SQ, et al. Roles of glutamate receptor-like channels(GLRs)in plant growth and response to environmental stimuli[J]. Plants, 2022, 11(24): 3450. |
[16] | Ahmed I, Kumar A, Bheri M, et al. Glutamate receptor like channels: emerging players in calcium mediated signaling in plants[J]. Int J Biol Macromol, 2023, 234: 123522. |
[17] |
Kwaaitaal M, Huisman R, Maintz J, et al. Ionotropic glutamate receptor(iGluR)-like channels mediate MAMP-induced calcium influx in Arabidopsis thaliana[J]. Biochem J, 2011, 440(3): 355-365.
doi: 10.1042/BJ20111112 pmid: 21848515 |
[18] | Weiland M, Mancuso S, Baluska F. Signalling via glutamate and GLRs in Arabidopsis thaliana[J]. Funct Plant Biol, 2015, 43(1): 1-25. |
[19] | Manzoor H, Kelloniemi J, Chiltz A, et al. Involvement of the glutamate receptor AtGLR3.3 in plant defense signaling and resistance to Hyaloperonospora arabidopsidis[J]. Plant J, 2013, 76(3): 466-480. |
[20] |
Grenzi M, Bonza MC, Alfieri A, et al. Structural insights into long-distance signal transduction pathways mediated by plant glutamate receptor-like channels[J]. New Phytol, 2021, 229(3): 1261-1267.
doi: 10.1111/nph.17034 pmid: 33107608 |
[21] | Kang S, Kim HB, Lee H, et al. Overexpression in Arabidopsis of a plasma membrane-targeting glutamate receptor from small radish increases glutamate-mediated Ca2+ influx and delays fungal infection[J]. Mol Cells, 2006, 21(3): 418-427. |
[22] | Tapken D, Anschütz U, Liu LH, et al. A plant homolog of animal glutamate receptors is an ion channel gated by multiple hydrophobic amino acids[J]. Sci Signal, 2013, 6(279): ra47. |
[23] | Grenzi M, Buratti S, Parmagnani AS, et al. Long-distance turgor pressure changes induce local activation of plant glutamate receptor-like channels[J]. Curr Biol, 2023, 33(6): 1019-1035.e8. |
[24] |
Lu W, Shi Y, Jackson AC, et al. Subunit composition of synaptic AMPA receptors revealed by a single-cell genetic approach[J]. Neuron, 2009, 62(2): 254-268.
doi: 10.1016/j.neuron.2009.02.027 pmid: 19409270 |
[25] |
Mayer ML. Emerging models of glutamate receptor ion channel structure and function[J]. Structure, 2011, 19(10): 1370-1380.
doi: 10.1016/j.str.2011.08.009 pmid: 22000510 |
[26] |
Chiu J, DeSalle R, Lam HM, et al. Molecular evolution of glutamate receptors: a primitive signaling mechanism that existed before plants and animals diverged[J]. Mol Biol Evol, 1999, 16(6): 826-838.
pmid: 10368960 |
[27] |
Wollmuth LP, Sobolevsky AI. Structure and gating of the glutamate receptor ion channel[J]. Trends Neurosci, 2004, 27(6): 321-328.
pmid: 15165736 |
[28] |
Lu W, Roche KW. Posttranslational regulation of AMPA receptor trafficking and function[J]. Curr Opin Neurobiol, 2012, 22(3): 470-479.
doi: 10.1016/j.conb.2011.09.008 pmid: 22000952 |
[29] |
Wu Q, Stolz S, Kumari A, et al. The carboxy-terminal tail of GLR3.3 is essential for wound-response electrical signaling[J]. New Phytol, 2022, 236(6): 2189-2201.
doi: 10.1111/nph.18475 pmid: 36089902 |
[30] | Maricq AV, Peckol E, Driscoll M, et al. Mechanosensory signalling in C. elegans mediated by the GLR-1 glutamate receptor[J]. Nature, 1995, 378(6552): 78-81. |
[31] | Chiu JC, Brenner ED, DeSalle R, et al. Phylogenetic and expression analysis of the glutamate-receptor-like gene family in Arabidopsis thaliana[J]. Mol Biol Evol, 2002, 19(7): 1066-1082. |
[32] | Ger MF, Rendon G, Tilson JL, et al. Domain-based identification and analysis of glutamate receptor ion channels and their relatives in prokaryotes[J]. PLoS One, 2010, 5(10): e12827. |
[33] | Ramos-Vicente D, Ji J, Gratacòs-Batlle E, et al. Metazoan evolution of glutamate receptors reveals unreported phylogenetic groups and divergent lineage-specific events[J]. eLife, 2018, 7: e35774. |
[34] |
Wo ZG, Oswald RE. Unraveling the modular design of glutamate-gated ion channels[J]. Trends Neurosci, 1995, 18(4): 161-168.
pmid: 7539962 |
[35] | Armstrong N, Sun Y, Chen GQ, et al. Structure of a glutamate-receptor ligand-binding core in complex with kainate[J]. Nature, 1998, 395(6705): 913-917. |
[36] | Wudick MM, Michard E, Oliveira Nunes C, et al. Comparing plant and animal glutamate receptors: common traits but different fates?[J]. J Exp Bot, 2018, 69(17): 4151-4163. |
[37] |
Chen JQ, Jing YH, Zhang XY, et al. Evolutionary and expression analysis provides evidence for the plant glutamate-like receptors family is involved in woody growth-related function[J]. Sci Rep, 2016, 6: 32013.
doi: 10.1038/srep32013 pmid: 27554066 |
[38] | Li XR, Zhu TH, Wang XY, et al. Genome-wide identification of glutamate receptor-like gene family in soybean[J]. Heliyon, 2023, 9(11): e21655. |
[39] | Sun HH, Liu RC, Qi YT, et al. Genome-wide exploration of the grape GLR gene family and differential responses of VvGLR3.1 and VvGLR3.2 to low temperature and salt stress[J]. Phyton, 2024, 93(3): 533-549. |
[40] |
Ni J, Yu ZM, Du GK, et al. Heterologous expression and functional analysis of rice GLUTAMATE RECEPTOR-LIKE family indicates its role in glutamate triggered calcium flux in rice roots[J]. Rice, 2016, 9(1): 9.
doi: 10.1186/s12284-016-0081-x pmid: 26956369 |
[41] |
Rajjou L, Duval M, Gallardo K, et al. Seed germination and vigor[J]. Annu Rev Plant Biol, 2012, 63: 507-533.
doi: 10.1146/annurev-arplant-042811-105550 pmid: 22136565 |
[42] | Finkelstein RR, Gampala SSL, Rock CD. Abscisic acid signaling in seeds and seedlings[J]. Plant Cell, 2002, 14(Suppl): S15-S45. |
[43] | Kang JM, Mehta S, Turano FJ. The putative glutamate receptor 1.1(AtGLR1.1)in Arabidopsis thaliana regulates abscisic acid biosynthesis and signaling to control development and water loss[J]. Plant Cell Physiol, 2004, 45(10): 1380-1389. |
[44] | Kong DD, Ju CL, Parihar A, et al. Arabidopsis glutamate receptor homolog3.5 modulates cytosolic Ca2+ level to counteract effect of abscisic acid in seed germination[J]. Plant Physiol, 2015, 167(4): 1630-1642. |
[45] | Kong DD, Hu HC, Okuma E, et al. L-met activates Arabidopsis GLR Ca2+ channels upstream of ROS production and regulates stomatal movement[J]. Cell Rep, 2016, 17(10): 2553-2561. |
[46] |
Li J, Zhu SH, Song XW, et al. A rice glutamate receptor-like gene is critical for the division and survival of individual cells in the root apical meristem[J]. Plant Cell, 2006, 18(2): 340-349.
doi: 10.1105/tpc.105.037713 pmid: 16377757 |
[47] | Vincill ED, Clarin AE, Molenda JN, et al. Interacting glutamate receptor-like proteins in phloem regulate lateral root initiation in Arabidopsis[J]. Plant Cell, 2013, 25(4): 1304-1313. |
[48] | Singh SK, Chien CT, Chang IF. The Arabidopsis glutamate receptor-like gene GLR3.6 controls root development by repressing the Kip-related protein gene KRP4[J]. J Exp Bot, 2016, 67(6): 1853-1869. |
[49] |
Michard E, Lima PT, Borges F, et al. Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine[J]. Science, 2011, 332(6028): 434-437.
doi: 10.1126/science.1201101 pmid: 21415319 |
[50] |
Schwenk J, Harmel N, Zolles G, et al. Functional proteomics identify cornichon proteins as auxiliary subunits of AMPA receptors[J]. Science, 2009, 323(5919): 1313-1319.
doi: 10.1126/science.1167852 pmid: 19265014 |
[51] |
Brockie PJ, Jensen M, Mellem JE, et al. Cornichons control ER export of AMPA receptors to regulate synaptic excitability[J]. Neuron, 2013, 80(1): 129-142.
doi: 10.1016/j.neuron.2013.07.028 pmid: 24094107 |
[52] |
Casson SA, Hetherington AM. Environmental regulation of stomatal development[J]. Curr Opin Plant Biol, 2010, 13(1): 90-95.
doi: 10.1016/j.pbi.2009.08.005 pmid: 19781980 |
[53] | Hamilton DW, Hills A, Kohler B, et al. Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid[J]. Proc Natl Acad Sci U S A, 2000, 97(9): 4967-4972. |
[54] | Pei ZM, Murata Y, Benning G, et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells[J]. Nature, 2000, 406(6797): 731-734. |
[55] | Kwak JM, Mori IC, Pei ZM, et al. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis[J]. EMBO J, 2003, 22(11): 2623-2633. |
[56] |
León J, Rojo E, Sánchez-Serrano JJ. Wound signalling in plants[J]. J Exp Bot, 2001, 52(354): 1-9.
doi: 10.1093/jexbot/52.354.1 pmid: 11181708 |
[57] |
Ikeuchi M, Favero DS, Sakamoto Y, et al. Molecular mechanisms of plant regeneration[J]. Annu Rev Plant Biol, 2019, 70: 377-406.
doi: 10.1146/annurev-arplant-050718-100434 pmid: 30786238 |
[58] |
Rymen B, Kawamura A, Lambolez A, et al. Histone acetylation orchestrates wound-induced transcriptional activation and cellular reprogramming in Arabidopsis[J]. Commun Biol, 2019, 2: 404.
doi: 10.1038/s42003-019-0646-5 pmid: 31701032 |
[59] |
Hernández-Coronado M, Dias Araujo PC, Ip PL, et al. Plant glutamate receptors mediate a bet-hedging strategy between regeneration and defense[J]. Dev Cell, 2022, 57(4): 451-465.e6.
doi: 10.1016/j.devcel.2022.01.013 pmid: 35148835 |
[60] | Yu B, Wu Q, Li XX, et al. GLUTAMATE RECEPTOR-like gene OsGLR3.4 is required for plant growth and systemic wound signaling in rice(Oryza sativa)[J]. New Phytol, 2022, 233(3): 1238-1256. |
[61] |
Farmer EE, Gao YQ, Lenzoni G, et al. Wound- and mechanostimulated electrical signals control hormone responses[J]. New Phytol, 2020, 227(4): 1037-1050.
doi: 10.1111/nph.16646 pmid: 32392391 |
[62] | Kloth KJ, Dicke M. Rapid systemic responses to herbivory[J]. Curr Opin Plant Biol, 2022, 68: 102242. |
[63] | Mousavi SAR, Chauvin A, Pascaud F, et al. GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling[J]. Nature, 2013, 500(7463): 422-426. |
[64] | Nguyen CT, Kurenda A, Stolz S, et al. Identification of cell populations necessary for leaf-to-leaf electrical signaling in a wounded plant[J]. Proc Natl Acad Sci U S A, 2018, 115(40): 10178-10183. |
[65] |
Toyota M, Spencer D, Sawai-Toyota S, et al. Glutamate triggers long-distance, calcium-based plant defense signaling[J]. Science, 2018, 361(6407): 1112-1115.
doi: 10.1126/science.aat7744 pmid: 30213912 |
[66] | Vincent TR, Avramova M, Canham J, et al. Interplay of plasma membrane and vacuolar ion channels, together with BAK1, elicits rapid cytosolic calcium elevations in Arabidopsis during aphid feeding[J]. Plant Cell, 2017, 29(6): 1460-1479. |
[67] |
Wang GT, Hu CY, Zhou J, et al. Systemic root-shoot signaling drives jasmonate-based root defense against nematodes[J]. Curr Biol, 2019, 29(20): 3430-3438.e4.
doi: S0960-9822(19)31099-1 pmid: 31588001 |
[68] | Hu CY, Duan SQ, Zhou J, et al. Characteristics of herbivory/wound-elicited electrical signal transduction in tomato[J]. Front Agr Sci Eng, 2021: 8(2):292-301. |
[69] | Hu CY, Wu SF, Li JJ, et al. Herbivore-induced Ca2+ signals trigger a jasmonate burst by activating ERF16-mediated expression in tomato[J]. New Phytol, 2022, 236(5): 1796-1808. |
[70] |
Hedrich R, Salvador-Recatalà V, Dreyer I. Electrical wiring and long-distance plant communication[J]. Trends Plant Sci, 2016, 21(5): 376-387.
doi: S1360-1385(16)00032-7 pmid: 26880317 |
[71] | Choi WG, Hilleary R, Swanson SJ, et al. Rapid, long-distance electrical and calcium signaling in plants[J]. Annu Rev Plant Biol, 2016, 67: 287-307. |
[72] | Barbosa-Caro JC, Wudick MM. Revisiting plant electric signaling: challenging an old phenomenon with novel discoveries[J]. Curr Opin Plant Biol, 2024, 79: 102528. |
[73] | Li F, Wang J, Ma CL, et al. Glutamate receptor-like channel3.3 is involved in mediating glutathione-triggered cytosolic calcium transients, transcriptional changes, and innate immunity responses in Arabidopsis[J]. Plant Physiol, 2013, 162(3): 1497-1509. |
[74] |
Bjornson M, Pimprikar P, Nürnberger T, et al. The transcriptional landscape of Arabidopsis thaliana pattern-triggered immunity[J]. Nat Plants, 2021, 7(5): 579-586.
doi: 10.1038/s41477-021-00874-5 pmid: 33723429 |
[75] |
朱金成, 杨洋, 娄慧, 等. 外源褪黑素调控棉花枯萎病抗性研究[J]. 生物技术通报, 2023, 39(1): 243-252.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0419 |
Zhu JC, Yang Y, Lou H, et al. Regulation of Fusarium wilt resistance in cotton by exogenous melatonin[J]. Biotechnol Bull, 2023, 39(1): 243-252. | |
[76] | Liu SM, Zhang XJ, Xiao SH, et al. A single-nucleotide mutation in a GLUTAMATE RECEPTOR-LIKE gene confers resistance to Fusarium wilt in Gossypium hirsutum[J]. Adv Sci, 2021, 8(7): 2002723. |
[77] | Feng SX, Pan CZ, Ding ST, et al. The glutamate receptor plays a role in defense against Botrytis cinerea through electrical signaling in tomato[J]. Appl Sci, 2021, 11(23): 11217. |
[78] |
Cheng Y, Zhang XX, Sun TY, et al. Glutamate receptor homolog3.4 is involved in regulation of seed germination under salt stress in Arabidopsis[J]. Plant Cell Physiol, 2018, 59(5): 978-988.
doi: 10.1093/pcp/pcy034 pmid: 29432559 |
[79] | Wang PH, Lee CG, Lin YS, et al. The glutamate receptor-like protein GLR3.7 interacts with 14-3-3ω and participates in salt stress response in Arabidopsis thaliana[J]. Front Plant Sci, 2019, 10: 1169. |
[80] | Silamparasan D, Chang IF, Jinn TL. Calcium-dependent protein kinase CDPK16 phosphorylates serine-856 of glutamate receptor-like GLR3.6 protein leading to salt-responsive root growth in Arabidopsis[J]. Front Plant Sci, 2023, 14: 1093472. |
[81] | Wan SQ, Wang WD, Zhou TS, et al. Transcriptomic analysis reveals the molecular mechanisms of Camellia sinensis in response to salt stress[J]. Plant Growth Regul, 2018, 84(3): 481-492. |
[82] | Zeng HQ, Zhao BQ, Wu HC, et al. Comprehensive in silico characterization and expression profiling of nine gene families associated with calcium transport in soybean[J]. Agronomy, 2020, 10(10): 1539. |
[83] | Dugasa MT, Feng X, Wang NH, et al. Comparative transcriptome and tolerance mechanism analysis in the two contrasting wheat(Triticum aestivum L.) cultivars in response to drought and salinity stresses[J]. Plant Growth Regul, 2021, 94(1): 101-114. |
[84] |
Lu GH, Wang XP, Liu JH, et al. Application of T-DNA activation tagging to identify glutamate receptor-like genes that enhance drought tolerance in plants[J]. Plant Cell Rep, 2014, 33(4): 617-631.
doi: 10.1007/s00299-014-1586-7 pmid: 24682459 |
[85] | Philippe F, Verdu I, Morère-Le Paven MC, et al. Involvement of Medicago truncatula glutamate receptor-like channels in nitric oxide production under short-term water deficit stress[J]. J Plant Physiol, 2019, 236: 1-6. |
[86] | Li HZ, Jiang XC, Lv XZ, et al. Tomato GLR3.3 and GLR3.5 mediate cold acclimation-induced chilling tolerance by regulating apoplastic H2O2 production and redox homeostasis[J]. Plant Cell Environ, 2019, 42(12): 3326-3339. |
[87] | Li ZG, Ye XY, Qiu XM. Glutamate signaling enhances the heat tolerance of maize seedlings by plant glutamate receptor-like channels-mediated calcium signaling[J]. Protoplasma, 2019, 256(4): 1165-1169. |
[88] | Fichman Y, Myers RJ Jr, Grant DG, et al. Plasmodesmata-localized proteins and ROS orchestrate light-induced rapid systemic signaling in Arabidopsis[J]. Sci Signal, 2021, 14(671): eabf0322. |
[89] | 刘淑红. 邯郸地区棉花枯萎病的发生及防治措施[J]. 农业科技通讯, 2019(9): 301-302. |
Liu SH. Occurrence and control measures of cotton wilt in Handan area[J]. Bull Agric Sci Technol, 2019(9): 301-302. | |
[90] | Yan C, Gao QF, Yang M, et al. Ca2+/calmodulin-mediated desensitization of glutamate receptors shapes plant systemic wound signalling and anti-herbivore defence[J]. Nat Plants, 2024, 10(1): 145-160. |
[1] | SHEN Peng, GAO Ya-Bin, DING Hong. Identification and Expression Analysis of SAT Gene Family in Potato(Solanum tuberosum L.) [J]. Biotechnology Bulletin, 2024, 40(9): 64-73. |
[2] | MAN Quan-cai, MENG Zi-nuo, LI Wei, CAI Xin-ru, SU Run-dong, FU Chang-qing, GAO Shun-juan, CUI Jiang-hui. Identification and Expression Analysis of AQP Gene Family in Potato [J]. Biotechnology Bulletin, 2024, 40(9): 51-63. |
[3] | LI Yong-hui, BAO Xing-xing, DUAN Yi-ke, ZHAO Yun-xia, YU Xiang-li, CHEN Yao, ZHANG Yan-zhao. Genome-wide Identification and Expression Features Analysis of the bZIP Family in Rhododendron henanense subsp. lingbaoense [J]. Biotechnology Bulletin, 2024, 40(8): 186-198. |
[4] | CUI Yuan-yuan, WANG Zhao-yi, BAI Shuang-yu, REN Yu-zhao, DOU Fei-fei, LIU Cai-xia, LIU Feng-lou, WANG Zhang-jun, LI Qing-feng. Genome-wide Identification of Non-specific Phospholipase C Gene Family in Hordeum vulgare L. and Stress Expression Analysis at Seedling Stage [J]. Biotechnology Bulletin, 2024, 40(8): 74-82. |
[5] | LIU Dan-dan, WANG Lei-gang, SUN Ming-hui, JIAO Xiao-yu, WU Qiong, WANG Wen-jie. Genome-wide Identification and Expression Pattern Profiling of the Trehalose-6-phosphate Synthase(TPS)Gene Family in Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2024, 40(8): 152-163. |
[6] | YU Niu, LIU Fan, YANG Jin-chang. Cloning of SgTPS7 in Sindora glabra and Its Function in Terpene Synthesis and Abiotic Stress [J]. Biotechnology Bulletin, 2024, 40(8): 164-173. |
[7] | WU Ding-jie, CHEN Ying-ying, XU Jing, LIU Yuan, ZHANG Hang, LI Rui-li. Research Progress in Plant Gibberellin Oxidase and Its Functions [J]. Biotechnology Bulletin, 2024, 40(7): 43-54. |
[8] | HU Ya-dan, WU Guo-qiang, LIU Chen, WEI Ming. Roles of MYB Transcription Factor in Regulating the Responses of Plants to Stress [J]. Biotechnology Bulletin, 2024, 40(6): 5-22. |
[9] | DU Bing-shuai, ZOU Xin-hui, WANG Zi-hao, ZHANG Xin-yuan, CAO Yi-bo, ZHANG Ling-yun. Genome-wide Identification and Expression Analysis of the SWEET Gene Family in Camellia oleifera [J]. Biotechnology Bulletin, 2024, 40(5): 179-190. |
[10] | GUO Hui-yan, DONG Xue, AN Meng-nan, XIA Zi-hao, WU Yuan-hua. Research Progress in the Functions of Key Enzymes of Ubiquitination Modification in Plant Stress Responses [J]. Biotechnology Bulletin, 2024, 40(4): 1-11. |
[11] | JIANG Lin-qi, ZHAO Jia-ying, ZHENG Fei-xiong, YAO Xin-yi, LI Xiao-xian, YU Zhen-ming. Identification and Expression Analysis of 14-3-3 Gene Family in Dendrobium officinale [J]. Biotechnology Bulletin, 2024, 40(3): 229-241. |
[12] | ZHOU Hong-dan, LUO Xiao-ping, TU Mi-xue, LI Zhong-guang. Phytomelatonin: An Emerging Signal Molecule Responding to Abiotic Stress [J]. Biotechnology Bulletin, 2024, 40(3): 41-51. |
[13] | WU Cui-cui, XIAO Shui-ping. Genome-wide Identification of HD-Zip Gene Family in Gossypium hirsutum L. and Expression Analysis in Response to Abiotic Stress [J]. Biotechnology Bulletin, 2024, 40(2): 130-145. |
[14] | XIN Qi, LI Ya-fan, YIN Zheng, ZHANG Xiao-dan, CHEN Ting, LIU Xiao-hua. Identification and Expression Analysis of the CBL-CIPK Gene Family in Sugarcane [J]. Biotechnology Bulletin, 2024, 40(2): 197-211. |
[15] | LI Ya-nan, ZHANG Hao-jie, LIANG Meng-jing, LUO Tao, LI Wang-ning, ZHANG Chun-hui, JI Chun-li, LI Run-zhi, XUE Jin-ai, CUI Hong-li. Identification and Expression Analysis of Calcium-dependent Protein Kinase(CDPK)Family in Haematococcus pluvialis [J]. Biotechnology Bulletin, 2024, 40(2): 300-312. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||