Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (10): 98-107.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0788
Previous Articles Next Articles
GAO Yun-yun1(), YANG Hai-fei1,2, LYU Hu-jie1, LIU Yong-xin1()
Received:
2024-08-16
Online:
2024-10-26
Published:
2024-11-20
Contact:
LIU Yong-xin
E-mail:gaoyunyun@caas.cn;liuyongxin@caas.cn
GAO Yun-yun, YANG Hai-fei, LYU Hu-jie, LIU Yong-xin. Analytical Approaches and Functional Insights for Microbiome Studies[J]. Biotechnology Bulletin, 2024, 40(10): 98-107.
Fig. 1 Development and application of microbiome study A: Application scenarios of microbiome study. B: Significant technological and methodological developments driving microbiome study. C: Trends in key areas of microbiome study
Fig. 3 Case study on the effects of plants-rhizosphere microorganism interaction on plant nutrient uptake based on metagenomic analysis A: Develop scientific hypotheses. Based on the observation that nitrogen use efficiency of indica rice is higher than that of japonica rice, the hypothesis that rice and the rhizosphere microbiome interact to influence nitrogen use efficiency is proposed. B: Implement practical programs. Utilizing amplification, metagenomic analysis, and culture group analysis, the differences in root microbiomes between indica and japonica rice are examined. Additionally, the role of the NRT1.1B gene in regulating these differences is investigated, and experiments are conducted on the cultivation of rice root microbiomes and synthetic communities to assess changes in nitrogen absorption. C: Theoretical validation. Specific root microbiomes participate in the process of organic nitrogen mineralization, thereby enhancing nitrogen uptake in rice. This phenomenon is linked to the natural variation of the nitrate transporter gene NRT1.1B between indica and japonica rice
[1] | Kumari P, Prakash P, Yadav S, et al. Microbiome analysis: an emerging forensic investigative tool[J]. Forensic Sci Int, 2022, 340: 111462. |
[2] |
Berg G, Rybakova D, Fischer D, et al. Microbiome definition re-visited: old concepts and new challenges[J]. Microbiome, 2020, 8(1): 103.
doi: 10.1186/s40168-020-00875-0 pmid: 32605663 |
[3] | 刘双江, 施文元, 赵国屏. 中国微生物组计划: 机遇与挑战[J]. 中国科学院院刊, 2017, 32(3): 241-250. |
Liu SJ, Shi WY, Zhao GP. China microbiome initiative: opportunity and challenges[J]. Bull Chin Acad Sci, 2017, 32(3): 241-250. | |
[4] | 刘永鑫, 秦媛, 郭晓璇, 等. 微生物组数据分析方法与应用[J]. 遗传, 2019, 41(9): 845-862. |
Liu YX, Qin Y, Guo XX, et al. Methods and applications for microbiome data analysis[J]. Hereditas, 2019, 41(9): 845-862. | |
[5] |
Enge M, Arda HE, Mignardi M, et al. Single-cell analysis of human pancreas reveals transcriptional signatures of aging and somatic mutation patterns[J]. Cell, 2017, 171(2): 321-330.e14.
doi: S0092-8674(17)31053-X pmid: 28965763 |
[6] |
Earl JP, Adappa ND, Krol J, et al. Species-level bacterial community profiling of the healthy sinonasal microbiome using Pacific Biosciences sequencing of full-length 16S rRNA genes[J]. Microbiome, 2018, 6(1): 190.
doi: 10.1186/s40168-018-0569-2 pmid: 30352611 |
[7] |
Karst SM, Ziels RM, Kirkegaard RH, et al. High-accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing[J]. Nat Methods, 2021, 18(2): 165-169.
doi: 10.1038/s41592-020-01041-y pmid: 33432244 |
[8] |
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods, 2013, 10(10): 996-998.
doi: 10.1038/nmeth.2604 pmid: 23955772 |
[9] |
Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: High-resolution sample inference from Illumina amplicon data[J]. Nat Methods, 2016, 13(7): 581-583.
doi: 10.1038/nmeth.3869 pmid: 27214047 |
[10] | Liu YX, Qin Y, Chen T, et al. A practical guide to amplicon and metagenomic analysis of microbiome data[J]. Protein Cell, 2021, 12(5): 315-330. |
[11] |
Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nat Methods, 2010, 7(5): 335-336.
doi: 10.1038/nmeth.f.303 pmid: 20383131 |
[12] |
Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nat Biotechnol, 2019, 37(8): 852-857.
doi: 10.1038/s41587-019-0209-9 pmid: 31341288 |
[13] | Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Appl Environ Microbiol, 2009, 75(23): 7537-7541. |
[14] | Liu YX, Chen L, Ma TF, et al. EasyAmplicon: an easy-to-use, open-source, reproducible, and community-based pipeline for amplicon data analysis in microbiome research[J]. iMeta, 2023, 2(1): e83. |
[15] | Gao YY, Zhang GX, Jiang SY, et al. Wekemo Bioincloud: a user-friendly platform for meta-omics data analyses[J]. iMeta, 2024, 3(1): e175. |
[16] |
Martiny AC. High proportions of bacteria are culturable across major biomes[J]. ISME J, 2019, 13(8): 2125-2128.
doi: 10.1038/s41396-019-0410-3 pmid: 30952994 |
[17] |
Zhang JY, Liu YX, Guo XX, et al. High-throughput cultivation and identification of bacteria from the plant root microbiota[J]. Nat Protoc, 2021, 16(2): 988-1012.
doi: 10.1038/s41596-020-00444-7 pmid: 33442053 |
[18] | Xia H, Zhang Z, Luo C, et al. MultiPrime: a reliable and efficient tool for targeted next-generation sequencing[J]. iMeta, 2023, 2(4): e143. |
[19] |
玉霞, 赵飞燕, 孙志宏. 肠道中有益菌培养组学的研究进展[J]. 食品科学, 2023, 44(23): 365-371.
doi: 10.7506/spkx1002-6630-20221210-103 |
Yu X, Zhao FY, Sun ZH. Progress in culturemics research on beneficial intestinal bacteria[J]. Food Sci, 2023, 44(23): 365-371. | |
[20] | 王慧, 鞠峰. 宏基因组学在环境微生物组研究中的应用与展望[J]. 微生物学通报, 2024, 51(6): 1814-1833. |
Wang H, Ju F. Applications and perspectives of metagenomics in environmental microbiome research[J]. Microbiol China, 2024, 51(6): 1814-1833. | |
[21] |
Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2[J]. Genome Biol, 2019, 20(1): 257.
doi: 10.1186/s13059-019-1891-0 pmid: 31779668 |
[22] |
Franzosa EA, McIver LJ, Rahnavard G, et al. Species-level functional profiling of metagenomes and metatranscriptomes[J]. Nat Methods, 2018, 15(11): 962-968.
doi: 10.1038/s41592-018-0176-y pmid: 30377376 |
[23] | Beghini F, McIver LJ, Blanco-Míguez A, et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3[J]. eLife, 2021, 10: e65088. |
[24] |
Zhang JY, Liu YX, Zhang N, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice[J]. Nat Biotechnol, 2019, 37(6): 676-684.
doi: 10.1038/s41587-019-0104-4 pmid: 31036930 |
[25] |
Callahan BJ, Grinevich D, Thakur S, et al. Ultra-accurate microbial amplicon sequencing with synthetic long reads[J]. Microbiome, 2021, 9(1): 130.
doi: 10.1186/s40168-021-01072-3 pmid: 34090540 |
[26] | Wick RR, Judd LM, Gorrie CL, et al. Completing bacterial genome assemblies with multiplex MinION sequencing[J]. Microb Genom, 2017, 3(10): e000132. |
[27] |
Johnson JS, Spakowicz DJ, Hong BY, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis[J]. Nat Commun, 2019, 10(1): 5029.
doi: 10.1038/s41467-019-13036-1 pmid: 31695033 |
[28] | Callahan BJ, Wong J, Heiner C, et al. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution[J]. Nucleic Acids Res, 2019, 47(18): e103. |
[29] | Moon J, Kim N, Kim TJ, et al. Rapid diagnosis of bacterial meningitis by nanopore 16S amplicon sequencing: a pilot study[J]. Int J Med Microbiol, 2019, 309(6): 151338. |
[30] | Kai S, Matsuo Y, Nakagawa S, et al. Rapid bacterial identification by direct PCR amplification of 16S rRNA genes using the MinIONTM nanopore sequencer[J]. FEBS Open Bio, 2019, 9(3): 548-557. |
[31] |
Ohta A, Nishi K, Hirota K, et al. Using nanopore sequencing to identify fungi from clinical samples with high phylogenetic resolution[J]. Sci Rep, 2023, 13(1): 9785.
doi: 10.1038/s41598-023-37016-0 pmid: 37328565 |
[32] |
Benítez-Páez A, Portune KJ, Sanz Y. Species-level resolution of 16S rRNA gene amplicons sequenced through the MinIONTM portable nanopore sequencer[J]. Gigascience, 2016, 5: 4.
doi: 10.1186/s13742-016-0111-z pmid: 26823973 |
[33] |
Rang FJ, Kloosterman WP, de Ridder J. From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy[J]. Genome Biol, 2018, 19(1): 90.
doi: 10.1186/s13059-018-1462-9 pmid: 30005597 |
[34] |
Wang YH, Zhao Y, Bollas A, et al. Nanopore sequencing technology, bioinformatics and applications[J]. Nat Biotechnol, 2021, 39(11): 1348-1365.
doi: 10.1038/s41587-021-01108-x pmid: 34750572 |
[35] |
Lorig-Roach R, Meredith M, Monlong J, et al. Phased nanopore assembly with Shasta and modular graph phasing with GFAse[J]. Genome Res, 2024, 34(3): 454-468.
doi: 10.1101/gr.278268.123 pmid: 38627094 |
[36] | Wang Z, Qin L, Liu J, et al. Forensic nanopore sequencing of microhaplotype markers using QitanTech's QNome[J]. Forensic Sci Int Genet, 2022, 57: 102657. |
[37] | Ciuffreda L, Rodríguez-Pérez H, Flores C. Nanopore sequencing and its application to the study of microbial communities[J]. Comput Struct Biotechnol J, 2021, 19: 1497-1511. |
[38] | Overholt WA, Hölzer M, Geesink P, et al. Inclusion of Oxford Nanopore long reads improves all microbial and viral metagenome-assembled genomes from a complex aquifer system[J]. Environ Microbiol, 2020, 22(9): 4000-4013. |
[39] |
Kolmogorov M, Bickhart DM, Behsaz B, et al. metaFlye: scalable long-read metagenome assembly using repeat graphs[J]. Nat Methods, 2020, 17(11): 1103-1110.
doi: 10.1038/s41592-020-00971-x pmid: 33020656 |
[40] | Koren S, Walenz BP, Berlin K, et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation[J]. Genome Res, 2017, 27(5): 722-736. |
[41] |
Ruan J, Li H. Fast and accurate long-read assembly with wtdbg2[J]. Nat Methods, 2020, 17(2): 155-158.
doi: 10.1038/s41592-019-0669-3 pmid: 31819265 |
[42] |
Hu J, Wang Z, Sun ZY, et al. NextDenovo: an efficient error correction and accurate assembly tool for noisy long reads[J]. Genome Biol, 2024, 25(1): 107.
doi: 10.1186/s13059-024-03252-4 pmid: 38671502 |
[43] |
Bertrand D, Shaw J, Kalathiyappan M, et al. Hybrid metagenomic assembly enables high-resolution analysis of resistance determinants and mobile elements in human microbiomes[J]. Nat Biotechnol, 2019, 37(8): 937-944.
doi: 10.1038/s41587-019-0191-2 pmid: 31359005 |
[44] |
Nurk S, Meleshko D, Korobeynikov A, et al. metaSPAdes: a new versatile metagenomic assembler[J]. Genome Res, 2017, 27(5): 824-834.
doi: 10.1101/gr.213959.116 pmid: 28298430 |
[45] | Wick RR, Judd LM, Gorrie CL, et al. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads[J]. PLoS Comput Biol, 2017, 13(6): e1005595. |
[46] |
Zhang HW, Jain C, Aluru S. A comprehensive evaluation of long read error correction methods[J]. BMC Genomics, 2020, 21(Suppl 6): 889.
doi: 10.1186/s12864-020-07227-0 pmid: 33349243 |
[47] |
Fu SH, Wang AQ, Au KF. A comparative evaluation of hybrid error correction methods for error-prone long reads[J]. Genome Biol, 2019, 20(1): 26.
doi: 10.1186/s13059-018-1605-z pmid: 30717772 |
[48] | Agustinho DP, Fu YL, Menon VK, et al. Unveiling microbial diversity: harnessing long-read sequencing technology[J]. Nat Methods, 2024, 21(6): 954-966. |
[49] |
Sedlazeck FJ, Rescheneder P, Smolka M, et al. Accurate detection of complex structural variations using single-molecule sequencing[J]. Nat Methods, 2018, 15(6): 461-468.
doi: 10.1038/s41592-018-0001-7 pmid: 29713083 |
[50] | Peng K, Liu YX, Sun XR, et al. Large-scale bacterial genomic and metagenomic analysis reveals Pseudomonas aeruginosa as potential ancestral source of tigecycline resistance gene cluster tmexCD-toprJ[J]. Microbiol Res, 2024, 285: 127747. |
[51] |
Isidro J, Borges V, Pinto M, et al. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus[J]. Nat Med, 2022, 28(8): 1569-1572.
doi: 10.1038/s41591-022-01907-y pmid: 35750157 |
[52] |
Gao YY, Li DY, Liu YX. Microbiome research outlook: past, present, and future[J]. Protein Cell, 2023, 14(10): 709-712.
doi: 10.1093/procel/pwad031 |
[1] | LI Kai-hang, WANG Hao-chen, CHENG Ke-xin, YANG Yan, JIN Yi, HE Xiao-qing. Genetic Mechanisms of Plant-microbiome Interaction by Genome-wide Association Analysis Study [J]. Biotechnology Bulletin, 2023, 39(2): 24-34. |
[2] | ZHANG Yan-feng, DING Yan-ling, MA Ying, ZHOU Xiao-nan, YANG Chao-yun, SHI Yuan-gang, KANG Xiao-long. Comparative Analysis of Rumen and Fecal Microbial Characteristics Associated with Residual Feed Intake in Beef Cattle [J]. Biotechnology Bulletin, 2023, 39(1): 295-304. |
[3] | LU Zhao-xiang, WANG Xi-ran, LIAN Xin-lei, LIAO Xiao-ping, LIU Ya-hong, SUN Jian. Advances in the Discovery of Novel Antibiotic-resistant Genes Based on Functional Metagenomics [J]. Biotechnology Bulletin, 2022, 38(9): 17-27. |
[4] | WANG Ning, LI Hui-xiu, LI Ji, DING Guo-chun. Advances in Compost Regulation of Rhizospheric Microbiome to Suppress Plant Diseases [J]. Biotechnology Bulletin, 2022, 38(5): 4-12. |
[5] | ZHANG Yu-han, FAN Yi, LI Ting-ting, PANG Shuang, LIU Wei, BAI Ke-yu, ZHANG Xi-mei. Microbial Enrichment on Leaf Surface and DNA Extraction Method Based on the Metagenomics Sequencing [J]. Biotechnology Bulletin, 2022, 38(3): 256-263. |
[6] | YAN Cong-wen, SU Dai-fa, DAI Qing-zhong, ZHANG Zhen-rong, TIAN Yun-xia, DONG Qiong-e, ZHOU Wen-xing, CHEN Shan-yan, TONG Jiang-yun, CUI Xiao-long. Advances in Biological Control of Strawberry Diseases [J]. Biotechnology Bulletin, 2022, 38(12): 73-87. |
[7] | XIANG Fen, LI Wei, LIU Hong-yan, YIN Xia, ZENG Ze-xuan, ZHOU Ling-yun. Influence of Nitrogen Fertilizer Reduction on the Structure of Bacterial Community in Tea Garden Soil [J]. Biotechnology Bulletin, 2021, 37(6): 49-57. |
[8] | YUAN Yuan, HUANG Hai-chen, LI Lin, LIU Guo-hui, FU Jun-sheng, WU Xiao-ping. Effect of Lime on Preventing and Controlling Continuous Cropping Obstacle of Ganoderma lingzhi and Analysis of Its Microbial Community [J]. Biotechnology Bulletin, 2021, 37(4): 70-84. |
[9] | CHEN Si-qian, WU Bian, LIU Chen-jian, LI Xiao-ran. Research Advances on the Influence of Intestinal Microorganism on the Immune Effect of Vaccine [J]. Biotechnology Bulletin, 2021, 37(12): 220-226. |
[10] | ZHANG Li-xing, WANG Li-na, KANG Guang-bo, HUANG He. Application and Advances of Multi-omics Analysis in Inflammatory Bowel Disease [J]. Biotechnology Bulletin, 2021, 37(1): 155-167. |
[11] | LU Yu-fang, SHI Wei-ming. Rhizospheric Chemical Signals and Soil Nutrient Transformation [J]. Biotechnology Bulletin, 2020, 36(9): 14-24. |
[12] | SUN Yu, CHANG Jing-jing, TIAN Chun-jie. Technical Systems of Reorganization and Construction of Crop Rhizosphere Microbiome [J]. Biotechnology Bulletin, 2020, 36(9): 25-30. |
[13] | LIU Ji-ai, SHU Ai-ping, LIU Guang-rong, LI Zu-zhang, LIU Zeng-bing, GAO Zheng. Research Progress on Effect of Fertilization on Soil Properties and Microbiome [J]. Biotechnology Bulletin, 2019, 35(9): 21-28. |
[14] | GUO Jing, XIE Zhan-ling, LUO Tao, XUE Zhi-feng, GUO Jian-juan, LI Fa-xiong, ZHANG Xiu-juan. Comparative Study on Endophytic Fungi Diversity of Kobresia humilis in Floccularia luteovirens [J]. Biotechnology Bulletin, 2019, 35(11): 109-117. |
[15] | SONG Wei-feng, LI Ming-cong, GAO Zheng. Research Progress on in situ Detection Methods of Microorganisms [J]. Biotechnology Bulletin, 2017, 33(10): 26-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||