Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (5): 320-332.doi: 10.13560/j.cnki.biotech.bull.1985.2024-1137
WU Ze-yin1,2(
), HUANG Chen-yang2, ZHAO Meng-ran2, ZHANG Li-jiao2(
), YAO Fang-jie1,3(
)
Received:2024-11-24
Online:2025-05-26
Published:2025-06-05
Contact:
ZHANG Li-jiao, YAO Fang-jie
E-mail:16643582909@163.com;zhanglijiao@caas.cn;yaofj@aliyun.com
WU Ze-yin, HUANG Chen-yang, ZHAO Meng-ran, ZHANG Li-jiao, YAO Fang-jie. Genome-specific Analysis of Pleurotus cornucopiae CCMSSC 04611 with Short Stipe[J]. Biotechnology Bulletin, 2025, 41(5): 320-332.
| 类型Type | 数值Value |
|---|---|
| 原始reads总数Raw reads | 27 650 992 bp |
| 纯净reads总数Clean reads | 27 614 838 bp |
| 纯净reads/原始reads总数Clean reads/Raw reads | 99.87% |
| 原始碱基总数Raw bases | 8 295 297 600 bp |
| 纯净碱基总数Clean bases | 8 284 451 400 bp |
| 纯净碱基总数/原始碱基数Clean bases/Raw bases | 99.87% |
| Q30 | 95.47 |
Table 1 Sequencing result statistics
| 类型Type | 数值Value |
|---|---|
| 原始reads总数Raw reads | 27 650 992 bp |
| 纯净reads总数Clean reads | 27 614 838 bp |
| 纯净reads/原始reads总数Clean reads/Raw reads | 99.87% |
| 原始碱基总数Raw bases | 8 295 297 600 bp |
| 纯净碱基总数Clean bases | 8 284 451 400 bp |
| 纯净碱基总数/原始碱基数Clean bases/Raw bases | 99.87% |
| Q30 | 95.47 |
| 类型Type | 类别Item | 数值Value |
|---|---|---|
基因组组装结果 Genome assembly results | Contig的长度 Contig length | 34 635 218 bp |
| Contig数目 Contig number | 23 | |
| Contig N50的长度 Contig N50 | 2 878 553 bp | |
| Contig N90的长度 Contig N90 | 1 321 859 bp | |
| GC含量 GC content | 50.85% | |
| Gap数量 Gaps number | 0 | |
比对结果 Comparison results | 干净的reads数目 Clean reads | 27 614 838 bp |
| 基因组覆盖度 Mapped | 98.68% | |
| 基因组覆盖深度 Depth(X) | 230.33 | |
| BUSCO评估统计BUSCO assessment statistics | 完整的BUSCOs Complete BUSCOs (C) | 95.86% |
| 其他 Other | 4.14% |
Table 2 Results and comparison statistics
| 类型Type | 类别Item | 数值Value |
|---|---|---|
基因组组装结果 Genome assembly results | Contig的长度 Contig length | 34 635 218 bp |
| Contig数目 Contig number | 23 | |
| Contig N50的长度 Contig N50 | 2 878 553 bp | |
| Contig N90的长度 Contig N90 | 1 321 859 bp | |
| GC含量 GC content | 50.85% | |
| Gap数量 Gaps number | 0 | |
比对结果 Comparison results | 干净的reads数目 Clean reads | 27 614 838 bp |
| 基因组覆盖度 Mapped | 98.68% | |
| 基因组覆盖深度 Depth(X) | 230.33 | |
| BUSCO评估统计BUSCO assessment statistics | 完整的BUSCOs Complete BUSCOs (C) | 95.86% |
| 其他 Other | 4.14% |
Fig. 1 Genome circle chartFrom the outside to the inside, the first circle is contig; the second and the third circles are genes on the positive and negative strands of the genome, respectively; the fourth circle is the repeat sequence; the fifth circle is non-coding RNA, blue for tRNA, and purple for rRNA; the sixth circle is GC content; the innermost circle is GC-skew
类型 Type | 数目 Number | 总长度 Length (bp) | 占总基因组的比例 Percentage (%) |
|---|---|---|---|
| ClassI | |||
| DIRS | 133 | 129 762 | 0.37 |
| LNE | 40 | 33 096 | 0.10 |
| LTR | 2 | 1 607 | 0.00 |
| LTR/Copia | 296 | 369 293 | 1.07 |
| LTR/Gypsy | 668 | 1 378 110 | 3.98 |
| PLE|LARD | 403 | 306 372 | 0.88 |
| Total ClassI repeat | 1 542 | 2 181 919 | 6.30 |
| ClassII | |||
| Helitron | 68 | 121 516 | 0.35 |
| MITE | 10 | 10 302 | 0.03 |
| TIR | 152 | 94 316 | 0.27 |
| Total ClassII repeat | 237 | 225 858 | 0.65 |
| Total unknown | 790 | 403 799 | 1.17 |
| Total repeat | 1 779 | 2 790 299 | 8.06 |
Table 3 Statistics of predicted result for repeat sequence
类型 Type | 数目 Number | 总长度 Length (bp) | 占总基因组的比例 Percentage (%) |
|---|---|---|---|
| ClassI | |||
| DIRS | 133 | 129 762 | 0.37 |
| LNE | 40 | 33 096 | 0.10 |
| LTR | 2 | 1 607 | 0.00 |
| LTR/Copia | 296 | 369 293 | 1.07 |
| LTR/Gypsy | 668 | 1 378 110 | 3.98 |
| PLE|LARD | 403 | 306 372 | 0.88 |
| Total ClassI repeat | 1 542 | 2 181 919 | 6.30 |
| ClassII | |||
| Helitron | 68 | 121 516 | 0.35 |
| MITE | 10 | 10 302 | 0.03 |
| TIR | 152 | 94 316 | 0.27 |
| Total ClassII repeat | 237 | 225 858 | 0.65 |
| Total unknown | 790 | 403 799 | 1.17 |
| Total repeat | 1 779 | 2 790 299 | 8.06 |
| 类型Type | 类别Item | 数值Value |
|---|---|---|
编码基因 Gene | 编码基因个数 Gene number | 10 091 |
| 编码基因总长度Gene length | 22 163 364 bp | |
| 基因平均长度Average gene length | 2 196.35 bp | |
外显子/编码区 Exon / CDS | 外显子总长度Exon length | 16 287 789 |
| 平均外显子长度Average exon length | 220.74 bp | |
| 外显子数量Exon number | 73 787 | |
| 平均外显子数量Average exon number | 7.31 | |
内含子 Intron | 内含子总长度Intron length | 5 875 575 bp |
| 平均内含子长度Average intron length | 92.24 bp | |
| 内含子数量Intron number | 63 696 | |
| 平均内含子数量Average intron number | 6.31 |
Table 4 Gene prediction result statistics
| 类型Type | 类别Item | 数值Value |
|---|---|---|
编码基因 Gene | 编码基因个数 Gene number | 10 091 |
| 编码基因总长度Gene length | 22 163 364 bp | |
| 基因平均长度Average gene length | 2 196.35 bp | |
外显子/编码区 Exon / CDS | 外显子总长度Exon length | 16 287 789 |
| 平均外显子长度Average exon length | 220.74 bp | |
| 外显子数量Exon number | 73 787 | |
| 平均外显子数量Average exon number | 7.31 | |
内含子 Intron | 内含子总长度Intron length | 5 875 575 bp |
| 平均内含子长度Average intron length | 92.24 bp | |
| 内含子数量Intron number | 63 696 | |
| 平均内含子数量Average intron number | 6.31 |
| 非编码RNA分类 RNA classify | 数量 Number | 家族数量 Number of families | 类型 Type |
|---|---|---|---|
| rRNA | 10 | 4 | 5S_rRNA、28S_rRNA、5.8S_rRNA、18S_rRNA |
| tRNA | 190 | 47 | 编码20种氨基酸的氨酰tRNA |
| Other ncRNA | 33 | 12 | U2、U4、U5、U6、Hammerhead_3、RNaseP_nuc、TPP、 snosnR60_Z15、snoZ13_snr52、snosnR61、snR75、RNase_MRP |
Table 5 Statistics of non-coding RNA prediction results
| 非编码RNA分类 RNA classify | 数量 Number | 家族数量 Number of families | 类型 Type |
|---|---|---|---|
| rRNA | 10 | 4 | 5S_rRNA、28S_rRNA、5.8S_rRNA、18S_rRNA |
| tRNA | 190 | 47 | 编码20种氨基酸的氨酰tRNA |
| Other ncRNA | 33 | 12 | U2、U4、U5、U6、Hammerhead_3、RNaseP_nuc、TPP、 snosnR60_Z15、snoZ13_snr52、snosnR61、snR75、RNase_MRP |
| 基因簇ID号 #Gene_cluster ID | Contig的ID号 Contig _ID | 起始位置 Start | 终止位置 End | 长度 Length (bp) | 类型 Type |
|---|---|---|---|---|---|
| r1c1 | Contig00001 | 503 931 | 544 749 | 40 819 | NRPS-like |
| r1c2 | Contig00001 | 1 106 039 | 1 127 164 | 21 126 | Terpene |
| r1c3 | Contig00001 | 2 750 199 | 2 793 448 | 43 250 | NRPS-like |
| r2c1 | Contig00002 | 3 253 691 | 3 268 979 | 15 289 | Terpene |
| r2c2 | Contig00002 | 3 276 877 | 3 297 317 | 20 441 | Terpene |
| r2c3 | Contig00002 | 3 894 697 | 3 915 868 | 21 172 | Terpene |
| r4c1 | Contig00004 | 3 601 453 | 3 622 626 | 21 174 | Terpene |
| r6c1 | Contig00006 | 2 008 488 | 2 036 194 | 27 707 | Terpene |
| r7c1 | Contig00007 | 304 715 | 334 478 | 29 764 | Terpene |
| r7c2 | Contig00007 | 341 162 | 384 783 | 43 622 | NRPS-like |
| r7c3 | Contig00007 | 1 156 328 | 1 175 297 | 18 970 | Terpene |
| r7c4 | Contig00007 | 1 486 737 | 1 509 354 | 22 618 | Terpene |
| r7c5 | Contig00007 | 1 595 283 | 1 616 548 | 21 266 | Terpene |
| r8c1 | Contig00008 | 1 047 994 | 1 063 788 | 15 795 | Siderophore |
| r8c2 | Contig00008 | 1 101 589 | 1 117 271 | 15 683 | Terpene |
| r8c3 | Contig00008 | 2 099 343 | 2 159 862 | 60 520 | T1PKS terpene |
| r11c1 | Contig00011 | 737 247 | 781 939 | 44 693 | NRPS-like |
| r11c2 | Contig00011 | 937 321 | 958 369 | 21 049 | Terpene |
| r12c1 | Contig00012 | 394 515 | 475 152 | 80 638 | NRPS-like NRPS |
| r12c2 | Contig00012 | 706 886 | 753 022 | 46 137 | NRPS-like |
| r13c1 | Contig00013 | 239 414 | 281 686 | 42 273 | NRPS-like |
| r13c2 | Contig00013 | 418 312 | 473 120 | 54 809 | Terpene NRPS-like |
| r13c3 | Contig00013 | 1 117 342 | 1 139 968 | 22 627 | Terpene |
| r14c1 | Contig00014 | 62 746 | 84 086 | 21 341 | Terpene |
| r18c1 | Contig00018 | 793 776 | 814 236 | 20 461 | Terpene |
| r18c2 | Contig00018 | 1 742 683 | 1 760 831 | 18 149 | Terpene |
| r18c3 | Contig00018 | 1 854 974 | 1 876 066 | 21 093 | Terpene |
| r20c1 | Contig00020 | 1 708 421 | 1 767 926 | 59 506 | T1PKS NRPS-like |
| r23c1 | Contig00023 | 129 887 | 172 868 | 42 982 | NRPS-like |
| r23c2 | Contig00023 | 954 946 | 976 139 | 21 194 | Terpene |
Table 6 Gene cluster prediction result statistics
| 基因簇ID号 #Gene_cluster ID | Contig的ID号 Contig _ID | 起始位置 Start | 终止位置 End | 长度 Length (bp) | 类型 Type |
|---|---|---|---|---|---|
| r1c1 | Contig00001 | 503 931 | 544 749 | 40 819 | NRPS-like |
| r1c2 | Contig00001 | 1 106 039 | 1 127 164 | 21 126 | Terpene |
| r1c3 | Contig00001 | 2 750 199 | 2 793 448 | 43 250 | NRPS-like |
| r2c1 | Contig00002 | 3 253 691 | 3 268 979 | 15 289 | Terpene |
| r2c2 | Contig00002 | 3 276 877 | 3 297 317 | 20 441 | Terpene |
| r2c3 | Contig00002 | 3 894 697 | 3 915 868 | 21 172 | Terpene |
| r4c1 | Contig00004 | 3 601 453 | 3 622 626 | 21 174 | Terpene |
| r6c1 | Contig00006 | 2 008 488 | 2 036 194 | 27 707 | Terpene |
| r7c1 | Contig00007 | 304 715 | 334 478 | 29 764 | Terpene |
| r7c2 | Contig00007 | 341 162 | 384 783 | 43 622 | NRPS-like |
| r7c3 | Contig00007 | 1 156 328 | 1 175 297 | 18 970 | Terpene |
| r7c4 | Contig00007 | 1 486 737 | 1 509 354 | 22 618 | Terpene |
| r7c5 | Contig00007 | 1 595 283 | 1 616 548 | 21 266 | Terpene |
| r8c1 | Contig00008 | 1 047 994 | 1 063 788 | 15 795 | Siderophore |
| r8c2 | Contig00008 | 1 101 589 | 1 117 271 | 15 683 | Terpene |
| r8c3 | Contig00008 | 2 099 343 | 2 159 862 | 60 520 | T1PKS terpene |
| r11c1 | Contig00011 | 737 247 | 781 939 | 44 693 | NRPS-like |
| r11c2 | Contig00011 | 937 321 | 958 369 | 21 049 | Terpene |
| r12c1 | Contig00012 | 394 515 | 475 152 | 80 638 | NRPS-like NRPS |
| r12c2 | Contig00012 | 706 886 | 753 022 | 46 137 | NRPS-like |
| r13c1 | Contig00013 | 239 414 | 281 686 | 42 273 | NRPS-like |
| r13c2 | Contig00013 | 418 312 | 473 120 | 54 809 | Terpene NRPS-like |
| r13c3 | Contig00013 | 1 117 342 | 1 139 968 | 22 627 | Terpene |
| r14c1 | Contig00014 | 62 746 | 84 086 | 21 341 | Terpene |
| r18c1 | Contig00018 | 793 776 | 814 236 | 20 461 | Terpene |
| r18c2 | Contig00018 | 1 742 683 | 1 760 831 | 18 149 | Terpene |
| r18c3 | Contig00018 | 1 854 974 | 1 876 066 | 21 093 | Terpene |
| r20c1 | Contig00020 | 1 708 421 | 1 767 926 | 59 506 | T1PKS NRPS-like |
| r23c1 | Contig00023 | 129 887 | 172 868 | 42 982 | NRPS-like |
| r23c2 | Contig00023 | 954 946 | 976 139 | 21 194 | Terpene |
功能数据库 Database | 基因数及占比 Number and percentage (%) |
|---|---|
| GO数据库GO database | 6 331(62.74) |
| KEGG数据库KEGG database | 3 052(30.24) |
| KOG数据库KOG database | 4 930(48.86) |
| Pfam数据库Pfam database | 6 660(66.00) |
| Swissprot数据库Swissprot database | 5 477(54.28) |
| TrEMBL数据库TrEMBL database | 9 986(98.96) |
| NR数据库NR database | 9 994(99.04) |
| 合计Total | 9 999(99.09) |
Table 7 Gene function annotation statistics
功能数据库 Database | 基因数及占比 Number and percentage (%) |
|---|---|
| GO数据库GO database | 6 331(62.74) |
| KEGG数据库KEGG database | 3 052(30.24) |
| KOG数据库KOG database | 4 930(48.86) |
| Pfam数据库Pfam database | 6 660(66.00) |
| Swissprot数据库Swissprot database | 5 477(54.28) |
| TrEMBL数据库TrEMBL database | 9 986(98.96) |
| NR数据库NR database | 9 994(99.04) |
| 合计Total | 9 999(99.09) |
名称 Species | 菌株4611 Strain 4611 | 菌株406 Strain 406 |
|---|---|---|
总基因数量 Number of total genes | 10 091 | 10 437 |
参与家族聚类的基因数量 Number of cluster genes | 8 825(87.45%) | 9 086(87.06%) |
总基因家族数量 Number of total gene families | 7 442 | 7 402 |
共有基因家族数量 Number of share gene families | 7 318(98.33%) | 7 318(98.87%) |
共有基因数量 Number of share genes | 8 473(83.97%) | 8 869(84.98%) |
特有基因家族数量 Number of unique gene families | 124(1.67%) | 84(1.13%) |
特有基因数量 Number of unique genes | 1 618(16.03%) | 1 568(15.02%) |
Table 8 Gene family classification statistics
名称 Species | 菌株4611 Strain 4611 | 菌株406 Strain 406 |
|---|---|---|
总基因数量 Number of total genes | 10 091 | 10 437 |
参与家族聚类的基因数量 Number of cluster genes | 8 825(87.45%) | 9 086(87.06%) |
总基因家族数量 Number of total gene families | 7 442 | 7 402 |
共有基因家族数量 Number of share gene families | 7 318(98.33%) | 7 318(98.87%) |
共有基因数量 Number of share genes | 8 473(83.97%) | 8 869(84.98%) |
特有基因家族数量 Number of unique gene families | 124(1.67%) | 84(1.13%) |
特有基因数量 Number of unique genes | 1 618(16.03%) | 1 568(15.02%) |
| 1 | 石艳丽. 平菇栽培技术 [J]. 河南农业, 2024(11): 22-24. |
| Shi YL. Techniques of Pleurotus eryngii cultivation[J]. Henan Nongye, 2024(11): 22-24. | |
| 2 | 平菇的营养价值 [J]. 吉林蔬菜, 2011(4): 68. |
| The nutritional value of Pleurotus eryngii [J]. Jilin Vegetables, 2011(4): 68. | |
| 3 | 袁娅, 许佳妮, 张剑飞, 等. 不同培养基对平菇营养成分、多酚含量及其抗氧化活性的影响 [J]. 食品科学, 2014, 35(13): 137-142. |
| Yuan Y, Xu JN, Zhang JF, et al. Effects of different culture media on nutritional composition, polyphenol contents and antioxidant activity of Pleurotus ostreatus [J]. Food Sci, 2014, 35(13): 137-142. | |
| 4 | 宋永健, 朱欣桐, 张成成, 等. 平菇粉中有机硒的测定 [J]. 中国标准化, 2018(16): 191-192. |
| Song YJ, Zhu XT, Zhang CC, et al. Determination of organic selenium in Pleurotus ostreatus powder [J]. China Stand, 2018(16): 191-192. | |
| 5 | Zhao QC, Liu XP, Cui LL, et al. Extraction and bioactivities of the chemical composition from Pleurotus ostreatus: a review [J]. J Future Foods, 2024, 4(2): 111-118. |
| 6 | 李坤鹏, 郭杨子, 王俊明, 等. 平菇在医药、化工、环境保护领域的研究进展 [J]. 食品与发酵工业, 2024, 50(1): 351-358. |
| Li KP, Guo YZ, Wang JM, et al. Research progress of Pleurotus ostreatus in fields of medicine, chemical industry, and environmental protection [J]. Food Ferment Ind, 2024, 50(1): 351-358. | |
| 7 | G.Eger, 黄年来. 平菇的生物学特性和育种方法 Ⅰ、平菇菌种的选育方法 [J]. 食用菌, 1980, 2(3): 44-47. |
| G.Eger, Huang NL. Biological characteristics and breeding methods of Pleurotus ostreatus I. Breeding methods of Pleurotus ostreatus strains [J]. Edible Fungi, 1980, 2(3): 44-47. | |
| 8 | Li MM, Bi JJ, Bai Y, et al. Accumulation and cross-linkage of β-1,3/1,6-glucan lead to loss of basal stipe cell wall extensibility in mushroom Coprinopsis cinerea [J]. Carbohydr Polym, 2021, 259: 117743. |
| 9 | Zhu WW, Hu JB, Li Y, et al. Comparative proteomic analysis of Pleurotus ostreatus reveals great metabolic differences in the cap and stipe development and the potential role of Ca2+ in the primordium differentiation [J]. Int J Mol Sci, 2019, 20(24): 6317. |
| 10 | 于培海, 田俊霞, 蒋万兵, 等.平菇栽培中出现的问题及防治措施[J].宁夏农林科技,2009,(5):88-89. |
| Yu PH, Tian JX, Jiang WB, et al. Problems and control measures in the cultivation of Pleurotus ostreatus [J]. Ningxia Agriculture and Forestry Science and Technology, 2009, (5): 88-89. | |
| 11 | Kuratani M, Tanaka K, Terashima K, et al. The dst2 gene essential for photomorphogenesis of Coprinopsis cinerea encodes a protein with a putative FAD-binding-4 domain [J]. Fungal Genet Biol, 2010, 47(2): 152-158. |
| 12 | Wu TJ, Hu CC, Xie BG, et al. A single transcription factor (PDD1) determines development and yield of winter mushroom (Flammulina velutipes) [J]. Appl Environ Microbiol, 2019, 85(24): e01735-19. |
| 13 | 张雨. 金针菇采后菌柄伸长调控及复合保鲜技术研究 [D]. 兰州: 甘肃农业大学, 2021. |
| Zhang Y. Study on postharvest stalk elongation control and compound preservation technology of Flammulina velutipes [D]. Lanzhou: Gansu Agricultural University, 2021. | |
| 14 | 牛鑫. 灰盖鬼伞菌柄细胞壁结构、组成及细胞壁重构酶的研究 [D]. 南京: 南京师范大学, 2016. |
| Niu X. Study on the structure and composition of cell wall of Coprinus cinerea stalk and its cell wall remodeling enzyme [D]. Nanjing: Nanjing Normal University, 2016. | |
| 15 | 陶永新. 草菇分别在稻草诱导下和菌柄伸长中CAZy家族的表达调控 [D]. 福州: 福建农林大学, 2015. |
| Tao YX. Expression regulation of CAZy family in Volvariella volvacea under rice straw induction and stalk elongation respectively [D]. Fuzhou: Fujian Agriculture and Forestry University, 2015. | |
| 16 | 汪小芳. 白肉灵芝线粒体基因组解析及其同核异质体构建 [D]. 长春: 吉林农业大学, 2022. |
| Wang XF. Analysis of mitochondrial genome of Ganoderma lucidum and construction of homonuclear heterosomes [D]. Changchun: Jilin Agricultural University, 2022. | |
| 17 | 赵雨萱. 聚乙烯纳米包装对金针菇采后菌柄伸长的调控及其机理研究 [D]. 兰州: 甘肃农业大学, 2023. |
| Zhao YX. Regulation and mechanism of polyethylene nano-packaging on stalk elongation of Flammulina velutipes after harvest [D]. Lanzhou: Gansu Agricultural University, 2023. | |
| 18 | 马晓旭. 基于多组学的毛木耳子实体颜色控制位点及色素合成机制研究 [D]. 长春: 吉林农业大学, 2023. |
| Ma XX. Study on color control sites and pigment synthesis mechanism of Auricularia auricula fruitbody based on multiomics [D]. Changchun: Jilin Agricultural University, 2023. | |
| 19 | 陈佳悦, 段英明, 周雁, 等. 香菇ALDH家族基因鉴定、表达及功能分析 [J]. 园艺学报, 2024, 51(5): 1033-1046. |
| Chen JY, Duan YM, Zhou Y, et al. Identification, expression and function analysis of ALDH gene family in Lentinula edodes [J]. Acta Hortic Sin, 2024, 51(5): 1033-1046. | |
| 20 | 荣成博, 赵爽, 宋爽, 等. 白灵侧耳子实体发育相关基因的挖掘 [J]. 生物技术通报, 2018, 34(4): 115-120. |
| Rong CB, Zhao S, Song S, et al. Identification of candidate genes related to the development of Pleurotus tuoliensis fruiting bodies [J]. Biotechnol Bull, 2018, 34(4): 115-120. | |
| 21 | 王丽宁, 赵梦然, 邬向丽, 等. 两个糙皮侧耳菌株的比较基因组学研究 [J]. 菌物学报, 2019, 38(12): 2133-2143. |
| Wang LN, Zhao MR, Wu XL, et al. Comparative genomic analyses of two Pleurotus ostreatus strains [J]. Mycosystema, 2019, 38(12): 2133-2143. | |
| 22 | 马水丽, 叶丽云, 练水秀, 等. 肺形侧耳退化与基因组DNA甲基化关系的探讨 [J]. 食用菌学报, 2022, 29(4): 28-34. |
| Ma SL, Ye LY, Lian SX, et al. Relationship between degradation of Pleurotus pulmonarius and genomic DNA methylation [J]. Acta Edulis Fungi, 2022, 29(4): 28-34. | |
| 23 | 魏传正, 王朦, 张鹏, 等. 基于二代测序技术的MNP标记鉴别刺芹侧耳菌株 [J]. 食用菌学报, 2023, 30(1): 1-9. |
| Wei CZ, Wang M, Zhang P, et al. Identification of Pleurotus eryngii strains by MNP makers based on next-generation sequencing [J]. Acta Edulis Fungi, 2023, 30(1): 1-9. | |
| 24 | 阮文伟, 付建红, 崔凤真, 等. 环圈链霉菌(Stveptomyces anulatus) 89-2-2全基因组测序及序列分析 [J]. 微生物学通报, 2024, 51(8): 3085-3102. |
| Ruan W, Fu J, Cui F, et al. Whole-genome sequencing and sequence analysis of Streptomyces anulatus 89-2-2 [J]. Microbiol China, 2024, 51(8): 3085-3102. | |
| 25 | 刘利娟. 野生平菇菌株的鉴定及生物学评价 [D]. 邯郸: 河北工程大学, 2020. |
| Liu LJ. Identification and biological evaluation of wild Pleurotus ostreatus strains [D]. Handan: Hebei University of Engineering, 2020. | |
| 26 | 罗联忠, 谢宝贵. 草菇不同发育时期子实体菌柄细胞形态变化研究 [J]. 华中农业大学学报, 2004, 23(1): 61-63. |
| Luo LZ, Xie BG. Stipe cell morpha in different fruit-body development stage of Volvariella volvacea [J]. J Huazhong Agric Univ, 2004, 23(1): 61-63. | |
| Luo LZ, Xie BG, Luo LZ, et al. Stipe cell morpha in different fruit-body development stage of Volvariella volvacea [J]. J Huazhong Agric Univ, 2004, 23(1): 61-63. | |
| 27 | 吴莉丹, 冉雪琴, 牛熙, 等. 猪源致病性大肠杆菌基因组比较与毒力因子分析 [J]. 生物技术通报, 2023, 39(12): 287-299. |
| Wu LD, Ran XQ, Niu X, et al. Genome comparison and virulence factor analysis of pathogenic Escherichia coli from porcine [J]. Biotechnol Bull, 2023, 39(12): 287-299. | |
| 28 | Jurka J, Kapitonov VV, Pavlicek A, et al. Repbase Update, a database of eukaryotic repetitive elements [J]. Cytogenet Genome Res, 2005, 110(1/2/3/4): 462-467. |
| 29 | 王丽宁. 糙皮侧耳过氧化氢酶基因特征分析和功能研究 [D]. 北京: 中国农业科学院, 2019. |
| Wang LN. Characteristics and function of catalase gene in Pleurotus ostreatus [D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. | |
| 30 | Lee YY, de Ulzurrun GV, Schwarz EM, et al. Genome sequence of the oyster mushroom Pleurotus ostreatus strain PC9 [J]. G3: Genes, Genomes, Genetics, 2021,11(2). |
| 31 | 俞亚欣, 龙丽君, 李昌珠, 等. 灰毡毛忍冬AP1同源基因的克隆及互作蛋白鉴定 [J]. 药学学报, 2024, 59(10): 2880-2888. |
| Yu YX, Long LJ, Li CZ, et al. Cloning and interacted protein identification of AP1 homologous gene from Lonicera macranthoides [J]. Acta Pharm Sin, 2024, 59(10): 2880-2888. | |
| 32 | Yan JJ, Tong ZJ, Han X, et al. Transcriptome profiling reveals candidate genes related to stipe gradient elongation of Flammulina filiformis [J]. J Fungi, 2022, 9(1): 64. |
| 33 | 吕晓萌, 刘澳, 王庆佶, 等. 金针菇菌柄发育的转录组与蛋白组分析 [J]. 菌物学报, 2021, 40(12): 3231-3245. |
| Lyu XM, Liu A, Wang QJ, et al. Transcriptome and proteome analyses of Flammulina filiformis during stipe development [J]. Mycosystema, 2021, 40(12): 3231-3245. | |
| 34 | 崔玉琴, 刘询, 何晓兰, 等. 比较转录组学分析金针菇菌柄伸长调控相关途径和基因 [J].菌物学报, 2024, 43(12): 65-78. |
| Cui YQ, Liu X, He XL, et al. Comparative transcriptomics analysis of pathways and genes related to stipe elongation regulation of Flammulina filiformis [J]. Journal of Mycology, 2024, 43(12): 65-78. |
| [1] | ZHANG Hui, LU Wen-cai, WANG Dong, LIU Qian, MA Lian-jie. Identification of Bacillus cereus YT2-1C with High Indoleacetic Acid Yield and Its Growth-promoting Effect [J]. Biotechnology Bulletin, 2025, 41(5): 300-309. |
| [2] | ZHOU Jiang-hong, XIA Fei, ZHONG Li, QIU Lan-fen, LI Guang, LIU Qian, ZHANG Guo-feng, SHAO Jin-li, LI Na, CHE Shao-chen. Whole Genome Sequencing and Comparative Genomic Analysis of Antagonistic Bacterium CCBC3-3-1 against Verticillium dahlia [J]. Biotechnology Bulletin, 2024, 40(7): 235-246. |
| [3] | TIAN Tong-tong, GE Jia-zhen, GAO Peng-cheng, LI Xue-rui, SONG Guo-dong, ZHENG Fu-ying, CHU Yue-feng. Whole Genome Sequencing and Bioinformatics Analysis of Mycoplasma ovipneumoniae GH3-3 Strain [J]. Biotechnology Bulletin, 2024, 40(7): 323-334. |
| [4] | WANG Zi, SHI Jin-chuan, WANG Yong-qiang, SUN Miao, MENG Ling-hao, GENG Chao, LIU Kai. Whole Genome Sequencing and Genome Evolution Analysis of Capsular Serotype A and D Pasteurella multocida of Bovine [J]. Biotechnology Bulletin, 2024, 40(12): 282-290. |
| [5] | WANG Teng-hui, GE Wen-dong, LUO Ya-fang, FAN Zhen-yu, WANG Yu-shu. Gene Mapping of Kale White Leaves Based on Whole Genome Re-sequencing of Extreme Mixed Pool(BSA) [J]. Biotechnology Bulletin, 2023, 39(9): 176-182. |
| [6] | FANG Lan, LI Yan-yan, JIANG Jian-wei, CHENG Sheng, SUN Zheng-xiang, ZHOU Yi. Isolation, Identification and Growth-promoting Characteristics of Endohyphal Bacterium 7-2H from Endophytic Fungi of Spiranthes sinensis [J]. Biotechnology Bulletin, 2023, 39(8): 272-282. |
| [7] | GUO Shao-hua, MAO Hui-li, LIU Zheng-quan, FU Mei-yuan, ZHAO Ping-yuan, MA Wen-bo, LI Xu-dong, GUAN Jian-yi. Whole Genome Sequencing and Comparative Genome Analysis of a Fish-derived Pathogenic Aeromonas Hydrophila Strain XDMG [J]. Biotechnology Bulletin, 2023, 39(8): 291-306. |
| [8] | ZHANG Zhi-xia, LI Tian-pei, ZENG Hong, ZHU Xi-xian, YANG Tian-xiong, MA Si-nan, HUANG Lei. Genome Sequencing and Bioinformatics Analysis of Gelidibacter sp. PG-2 [J]. Biotechnology Bulletin, 2023, 39(3): 290-300. |
| [9] | HE Meng-ying, LIU Wen-bin, LIN Zhen-ming, LI Er-tong, WANG Jie, JIN Xiao-bao. Whole Genome Sequencing and Analysis of an Anti Gram-positive Bacterium Gordonia WA4-43 [J]. Biotechnology Bulletin, 2023, 39(2): 232-242. |
| [10] | ZHANG Ao-jie, LI Qing-yun, SONG Wen-hong, YAN Shao-hui, TANG Ai-xing, LIU You-yan. Whole Genome Sequencing Analysis of a Phenol-degrading Strain Alcaligenes faecalis JF101 [J]. Biotechnology Bulletin, 2023, 39(10): 292-303. |
| [11] | WANG Shuai, LV Hong-rui, ZHANG Hao, WU Zhan-wen, XIAO Cui-hong, SUN Dong-mei. Whole-Genome Sequencing Identification of Phosphate-solubilizing Bacteria PSB-R and Analysis of Its Phosphate-solubilizing Properties [J]. Biotechnology Bulletin, 2023, 39(1): 274-283. |
| [12] | WEN Chang, LIU Chen, LU Shi-yun, XU Zhong-bing, AI Chao-fan, LIAO Han-peng, ZHOU Shun-gui. Biological Characteristics and Genome Analysis of a Novel Multidrug-resistant Shigella flexneri Phage [J]. Biotechnology Bulletin, 2022, 38(9): 127-135. |
| [13] | LI Ji-hong, JING Yu-ling, MA Gui-zhen, GUO Rong-jun, LI Shi-dong. Genome Construction of Achromobacter 77 and Its Characteristics on Chemotaxis and Antibiotic Resistance [J]. Biotechnology Bulletin, 2022, 38(9): 136-146. |
| [14] | ZHANG Ze-ying, FAN Qing-feng, DENG Yun-feng, WEI Ting-zhou, ZHOU Zheng-fu, ZHOU Jian, WANG Jin, JIANG Shi-jie. Whole Genome Sequencing and Comparative Genomic Analysis of a High-yield Lipase-producing Strain WCO-9 [J]. Biotechnology Bulletin, 2022, 38(10): 216-225. |
| [15] | CHEN Ti-qiang, XU Xiao-lan, SHI Lin-chun, ZHONG Li-Yi. Sequencing and Analysis of the Whole Genome of Zizhi Cultivar ‘Wuzhi No.2’(Ganoderma sp. strain Zizhi S2) [J]. Biotechnology Bulletin, 2021, 37(11): 42-56. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||