Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (10): 216-225.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0099
Previous Articles Next Articles
ZHANG Ze-ying1,3(), FAN Qing-feng1,3, DENG Yun-feng1,3, WEI Ting-zhou1,3, ZHOU Zheng-fu2, ZHOU Jian1,3, WANG Jin2, JIANG Shi-jie1,3()
Received:
2021-01-21
Online:
2022-10-26
Published:
2022-11-11
Contact:
JIANG Shi-jie
E-mail:1148315372@qq.com;sjjiang0406@swust.edu.cn
ZHANG Ze-ying, FAN Qing-feng, DENG Yun-feng, WEI Ting-zhou, ZHOU Zheng-fu, ZHOU Jian, WANG Jin, JIANG Shi-jie. Whole Genome Sequencing and Comparative Genomic Analysis of a High-yield Lipase-producing Strain WCO-9[J]. Biotechnology Bulletin, 2022, 38(10): 216-225.
菌株Strain | 脂肪酶活力Lipase activity/(U·L-1) |
---|---|
WCO-9 | 2 833.33±166.67A |
ATCC 17908 | 24.44±8.39B |
Table 1 Analysis of the hydrolysis ability of lipase from WCO-9 strain on the substrate olive oil by GB/T 23535-2009 method
菌株Strain | 脂肪酶活力Lipase activity/(U·L-1) |
---|---|
WCO-9 | 2 833.33±166.67A |
ATCC 17908 | 24.44±8.39B |
Fig. 2 Lipase activity analysis of WCO-9 strain A: Analysis of lipase-producing ability of WCO-9 strain by rhodamine B-oil assimilation plate method; B: Differences in hydrolytic activity of lipase from WCO-9 strain towards various ρ-NP esters, ***P<0.01
编号No. | 通路Pathway ID | 功能描述Description | 基因编号Gene ID |
---|---|---|---|
1 | ko00071 | 脂肪酸降解 Fatty acid degradation | GE000138、GE000223、GE000309、GE000310、GE000604、GE000605、GE000616、GE001181、GE001341、GE001407、GE001474、GE001518、GE001530、GE001747、GE001825、GE001884、GE001964 |
2 | ko00561 | 甘油酯代谢 Glycerolipid metabolism | GE000861、GE000871、GE001701、GE001702、GE002495、GE002594 |
3 | ko00564 | 甘油磷脂代谢 Glycerophospholipid metabolism | GE000081、GE000318、GE000487、GE000575、GE000725、GE000800、GE000863、GE000871、GE001133、GE001134、GE001196、GE001398、GE001531、GE001566、GE002494、GE002495、GE002594、GE002873、GE002885 |
4 | ko01212 | 脂肪酸代谢 Fatty acid metabolism | GE000138、GE000223、GE000309、GE000310、GE000573、GE000587、GE000604、GE000605、GE000616、GE001181、GE001182、GE001359、GE001360、GE001404、GE001474、GE001769、GE001820、GE001825、GE002165、GE002197、GE002198、GE002362、GE002463、GE002920 |
Table 2 Fat metabolism and degradation pathways in lipase-producing strain WCO-9 genome and their related genes
编号No. | 通路Pathway ID | 功能描述Description | 基因编号Gene ID |
---|---|---|---|
1 | ko00071 | 脂肪酸降解 Fatty acid degradation | GE000138、GE000223、GE000309、GE000310、GE000604、GE000605、GE000616、GE001181、GE001341、GE001407、GE001474、GE001518、GE001530、GE001747、GE001825、GE001884、GE001964 |
2 | ko00561 | 甘油酯代谢 Glycerolipid metabolism | GE000861、GE000871、GE001701、GE001702、GE002495、GE002594 |
3 | ko00564 | 甘油磷脂代谢 Glycerophospholipid metabolism | GE000081、GE000318、GE000487、GE000575、GE000725、GE000800、GE000863、GE000871、GE001133、GE001134、GE001196、GE001398、GE001531、GE001566、GE002494、GE002495、GE002594、GE002873、GE002885 |
4 | ko01212 | 脂肪酸代谢 Fatty acid metabolism | GE000138、GE000223、GE000309、GE000310、GE000573、GE000587、GE000604、GE000605、GE000616、GE001181、GE001182、GE001359、GE001360、GE001404、GE001474、GE001769、GE001820、GE001825、GE002165、GE002197、GE002198、GE002362、GE002463、GE002920 |
Fig. 6 COG function classification chart of lipase-produc-ing strain WCO-9 1:RNA processing and modification. 2:Chromatin structure and dynamics. 3:Energy production and conversion. 4:Cell cycle control,cell division,chromosome partitioning. 5:Amino acid transport and metabolism. 6:Nucleotide transport and metabolism. 7:Carbohydrate transport and metabolism. 8:Coenzyme transport and metabolism. 9:Lipid transport and metabolism. 10:Translation,ribosomal structure and biogenesis. 11:Transcription. 12:Replication,recombination and repair. 13:Cell wall/membrane/envelope biogenesis. 14:Cell motility. 15:Posttranslational modification,protein turnover,chaperones. 16:Inorganic ion transport and metabolism. 17:Secondary metabolites biosynthesis,transport and catabolism. 18:General function prediction only. 19:Function unknown. 20:Signal transduction mechanisms. 21:Intracellular trafficking,secretion,and vesicular transport. 22:Defense mechanisms. 23:Extracellular structures. 24:Nuclear structure. 25:Cytoskeleton
类型Type | 基因组大小Genome size /bp | GC含量GC content /% | 编码基因数目Coding genes | GenBank登录号GenBank INSDC ID |
---|---|---|---|---|
WCO-9 | 3 193 903 | 38.47 | 2 943 | CP090890.1 |
Acinetobacter junii ATCC 17908 | 3 357 744 | 38.90 | 3 185 | APPX00000000.1 |
Acinetobacter baumannii ATCC 19606 | 3 927 723 | 39.18 | 3 681 | CP058289.1 |
Acinetobacter chinensis WCHAc010005 | 3 600 635 | 42.48 | 3 434 | CP032134.1 |
Table 3 Comparison of basic characteristics of whole genome sequences of strain WCO-9 and 3 strains of Acinetobacter
类型Type | 基因组大小Genome size /bp | GC含量GC content /% | 编码基因数目Coding genes | GenBank登录号GenBank INSDC ID |
---|---|---|---|---|
WCO-9 | 3 193 903 | 38.47 | 2 943 | CP090890.1 |
Acinetobacter junii ATCC 17908 | 3 357 744 | 38.90 | 3 185 | APPX00000000.1 |
Acinetobacter baumannii ATCC 19606 | 3 927 723 | 39.18 | 3 681 | CP058289.1 |
Acinetobacter chinensis WCHAc010005 | 3 600 635 | 42.48 | 3 434 | CP032134.1 |
WCO-9基因编号 Gene ID of WCO-9 | 功能注释 Function annotation | 注释来源数据库 Source of function | GenBank 中序列一致性 Sequence identity in GenBank/% | 同源菌株 Homologous source strain | ATCC 17908中同源蛋白编号 Homologous protein ID of ATCC 17908 | ATCC 17908中同源蛋白序列一致性Sequence identity with homologous protein ID of ATCC 17908/% |
---|---|---|---|---|---|---|
GE000005 | 脂肪酶2 Lipase 2 | Swissprot、TrEMBL | 100 | Acinetobacter junii NIPH 182 | WP_004965292.1 | 99.44 |
GE000880 | 脂肪酶1 Lipase 1 | Swissprot、TrEMBL | 100 | Acinetobacter junii NBRC 110497 | WP_004963343.1 | 99.41 |
GE000882 | GDSL脂肪酶 Lipase_GDSL | Pfam | 100 | Acinetobacter junii KCTC 42611 | ENV66375.1 | 99.52 |
GE001015 | 甘油三酯脂肪酶活性 Triglyceride lipase activity | GO | 99.78 | Acinetobacter junii YR7 | ENV66472.1 | 84.53 |
GE001547 | GDSL脂肪酶2 Lipase GDSL 2 | Pfam | 99.16 | Acinetobacter junii KCTC 42611 | WP_004962046.1 | 96.22 |
GE001701 | 三酰甘油脂肪酶 Triacylglycerol lipase | KEGG | 100 | Acinetobacter junii NIPH 182 | ENV65669.1 | 42.90 |
GE001702 | 三酰甘油脂肪酶 Triacylglycerol lipase | KEGG | 100 | Acinetobacter junii NIPH 182 | WP_035333945.1 | 40.29 |
GE001718 | 甘油三酯脂肪酶 Triglyceride lipase activity | GO | 100 | Acinetobacter junii TUM15553 | WP_004962461.1 | 98.78 |
GE001892 | 甘油三酯脂肪酶 Triglyceride lipase activity | GO | 100 | Acinetobacter junii SH205 | WP_004953257.1 | 99.80 |
GE001931 | 甘油三酯脂肪酶 Triglyceride lipase activity | GO | 90.76 | Acinetobacter sp. SAT183 | — | — |
GE002660 | 甘油三酯脂肪酶 Triglyceride lipase activity | GO | 99.38 | Acinetobacter junii NIPH 182 | ENV65669.1 | 78.72 |
GE000502 | 脂肪酶伴侣 Lipase chaperone | Pfam | 99.67 | Acinetobacter junii SB132 | — | — |
GE002659 | 脂肪酶伴侣 Lipase chaperone | Pfam、Swissprot、 TrEMBL | 98.56 | Acinetobacter junii YR7 | WP_004964537.1 | 63.98 |
GE001700 | 脂肪酶伴侣 Lipase chaperone | Pfam、Swissprot、 TrEMBL | 100 | Acinetobacter junii lzh-X15 | WP_004964537.1 | 32.56 |
Table 4 Sequence similarity between lipase genes and genes in NCBI database
WCO-9基因编号 Gene ID of WCO-9 | 功能注释 Function annotation | 注释来源数据库 Source of function | GenBank 中序列一致性 Sequence identity in GenBank/% | 同源菌株 Homologous source strain | ATCC 17908中同源蛋白编号 Homologous protein ID of ATCC 17908 | ATCC 17908中同源蛋白序列一致性Sequence identity with homologous protein ID of ATCC 17908/% |
---|---|---|---|---|---|---|
GE000005 | 脂肪酶2 Lipase 2 | Swissprot、TrEMBL | 100 | Acinetobacter junii NIPH 182 | WP_004965292.1 | 99.44 |
GE000880 | 脂肪酶1 Lipase 1 | Swissprot、TrEMBL | 100 | Acinetobacter junii NBRC 110497 | WP_004963343.1 | 99.41 |
GE000882 | GDSL脂肪酶 Lipase_GDSL | Pfam | 100 | Acinetobacter junii KCTC 42611 | ENV66375.1 | 99.52 |
GE001015 | 甘油三酯脂肪酶活性 Triglyceride lipase activity | GO | 99.78 | Acinetobacter junii YR7 | ENV66472.1 | 84.53 |
GE001547 | GDSL脂肪酶2 Lipase GDSL 2 | Pfam | 99.16 | Acinetobacter junii KCTC 42611 | WP_004962046.1 | 96.22 |
GE001701 | 三酰甘油脂肪酶 Triacylglycerol lipase | KEGG | 100 | Acinetobacter junii NIPH 182 | ENV65669.1 | 42.90 |
GE001702 | 三酰甘油脂肪酶 Triacylglycerol lipase | KEGG | 100 | Acinetobacter junii NIPH 182 | WP_035333945.1 | 40.29 |
GE001718 | 甘油三酯脂肪酶 Triglyceride lipase activity | GO | 100 | Acinetobacter junii TUM15553 | WP_004962461.1 | 98.78 |
GE001892 | 甘油三酯脂肪酶 Triglyceride lipase activity | GO | 100 | Acinetobacter junii SH205 | WP_004953257.1 | 99.80 |
GE001931 | 甘油三酯脂肪酶 Triglyceride lipase activity | GO | 90.76 | Acinetobacter sp. SAT183 | — | — |
GE002660 | 甘油三酯脂肪酶 Triglyceride lipase activity | GO | 99.38 | Acinetobacter junii NIPH 182 | ENV65669.1 | 78.72 |
GE000502 | 脂肪酶伴侣 Lipase chaperone | Pfam | 99.67 | Acinetobacter junii SB132 | — | — |
GE002659 | 脂肪酶伴侣 Lipase chaperone | Pfam、Swissprot、 TrEMBL | 98.56 | Acinetobacter junii YR7 | WP_004964537.1 | 63.98 |
GE001700 | 脂肪酶伴侣 Lipase chaperone | Pfam、Swissprot、 TrEMBL | 100 | Acinetobacter junii lzh-X15 | WP_004964537.1 | 32.56 |
[1] |
Javed S, Azeem F, Hussain S, et al. Bacterial lipases:a review on purification and characterization[J]. Prog Biophys Mol Biol, 2018, 132:23-34.
doi: 10.1016/j.pbiomolbio.2017.07.014 URL |
[2] |
Jung J, Park W. Acinetobacter species as model microorganisms in environmental microbiology:current state and perspectives[J]. Appl Microbiol Biotechnol, 2015, 99(6):2533-2548.
doi: 10.1007/s00253-015-6439-y URL |
[3] | Ken Ugo A, Vivian Amara A, Cn I, et al. Microbial lipases:a prospect for biotechnological industrial catalysis for green products:a review[J]. Ferment Technol, 2017, 6(2):1000144. |
[4] | Chandra P, Enespa, Singh DP. Microplastic degradation by bacteria in aquatic ecosystem[M]//Chowdhary P, Raj A, Verma D, et al. Microorganisms for Sustainable Environment and Health. Amsterdam:Elsevier, 2020:431-467. |
[5] |
Filho DG, Silva AG, Guidini CZ. Lipases:sources, immobilization methods, and industrial applications[J]. Appl Microbiol Biotechnol, 2019, 103(18):7399-7423.
doi: 10.1007/s00253-019-10027-6 URL |
[6] |
Sarmah N, Revathi D, Sheelu G, et al. Recent advances on sources and industrial applications of lipases[J]. Biotechnol Prog, 2018, 34(1):5-28.
doi: 10.1002/btpr.2581 URL |
[7] |
Vanleeuw E, Winderickx S, Thevissen K, et al. Substrate-specificity of Candida rugosa lipase and its industrial application[J]. ACS Sustain Chem Eng, 2019, 7(19):15828-15844.
doi: 10.1021/acssuschemeng.9b03257 |
[8] |
黄阳天, 陆育彪, 黄益帖, 等. 产电海洋脂肪酶生产菌的分离筛选鉴定及培养条件研究[J]. 生物技术通报, 2020, 36(12):91-97.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0833 |
Huang YT, Lu YB, Huang YT, et al. Screening and identification of marine electricity-producing and lipase-producing bacteria and preliminary study on its culture conditions[J]. Biotechnol Bull, 2020, 36(12):91-97. | |
[9] |
Haq A, Adeel S, Khan A, et al. Screening of lipase-producing bacteria and optimization of lipase-mediated biodiesel production from Jatropha curcas seed oil using whole cell approach[J]. Bioenergy Res, 2020, 13(4):1280-1296.
doi: 10.1007/s12155-020-10156-1 URL |
[10] |
Ng PC, Kirkness EF. Whole genome sequencing[J]. Methods Mol Biol, 2010, 628:215-226.
doi: 10.1007/978-1-60327-367-1_12 pmid: 20238084 |
[11] | 吕瑞瑞, 李伟程, 康小红, 等. 副干酪乳杆菌PC-01全基因组测序及不同副干酪乳杆菌菌株比较基因组学分析[J]. 微生物学通报, 2021(9):3025-3038. |
Lv RR, Li WC, Kang XH, et al. Whole genome sequencing of Lactobacillus paracasei PC-01 and comparative genomics analysis about Lactobacillus paracasei strains[J]. J Chin Inst Food Sci Technol, 2021(9):3025-3038. | |
[12] | Lim S, Chang DH, Kim BC. Whole-genome sequence of Bacillus solimangrovi GH 2-4 T, isolated from mangrove soil[J]. Genom Data, 2016, 10:89-90. |
[13] |
Patel RK, Shah RK, Prajapati VS, et al. Draft genome analysis of Acinetobacter indicus strain UBT1, an efficient lipase and biosurfactant producer[J]. Curr Microbiol, 2021, 78(4):1238-1244.
doi: 10.1007/s00284-021-02380-5 URL |
[14] |
Bouvet PJM, Grimont PAD. Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii[J]. Int J Syst Bacteriol, 1986, 36(2):228-240.
doi: 10.1099/00207713-36-2-228 URL |
[15] | 徐伟芳, 黄涛杨, 周敏, 等. 一株脂肪酶产生菌的筛选鉴定及其酶学性质研究[J]. 西南大学学报:自然科学版, 2017, 39(5):62-69. |
Xu WF, Huang TY, Zhou M, et al. Research on screening and identification of a lipase-producing bacterial strain and its enzymatic properties[J]. J Southwest Univ Nat Sci Ed, 2017, 39(5):62-69. | |
[16] |
Han RH, Lee JE, Yoon SH, et al. Acinetobacter pullicarnis sp. nov. isolated from chicken meat[J]. Arch Microbiol, 2020, 202(4):727-732.
doi: 10.1007/s00203-019-01785-y URL |
[17] |
Elnar AG, Kim MG, Lee JE, et al. Acinetobacter pullorum sp. nov., isolated from chicken meat[J]. J Microbiol Biotechnol, 2020, 30(4):526-532.
doi: 10.4014/jmb.2002.02033 URL |
[18] |
Carvalheira A, Gonzales-Siles L, Salvà-Serra F, et al. Acinetobacter portensis sp. nov. and Acinetobacter guerrae sp. nov., isolated from raw meat[J]. Int J Syst Evol Microbiol, 2020, 70(8):4544-4554.
doi: 10.1099/ijsem.0.004311 URL |
[19] |
Qin JY, Feng Y, Lü XJ, et al. Characterization of Acinetobacter chengduensis sp. nov., isolated from hospital sewage and capable of acquisition of carbapenem resistance genes[J]. Syst Appl Microbiol, 2020, 43(4):126092.
doi: 10.1016/j.syapm.2020.126092 URL |
[20] | Zhu WT, Dong K, Yang J, et al. Acinetobacter lanii sp. nov., Acinetobacter shaoyimingii sp. nov. and Acinetobacter wanghuae sp. nov., isolated from faeces of Equus kiang[J]. Int J Syst Evol Microbiol, 2021, 71(1):004567. |
[21] |
Acer Ö, Güven K, Poli A, et al. Acinetobacter mesopotamicus sp. nov., petroleum-degrading bacterium, isolated from petroleum-contaminated soil in Diyarbakir, in the southeast of Turkey[J]. Curr Microbiol, 2020, 77(10):3192-3200.
doi: 10.1007/s00284-020-02134-9 URL |
[22] |
Rivera-Pérez C, de los Ángeles Navarrete del Toro M, García-Carreño F. Purification and characterization of an intracellular lipase from pleopods of whiteleg shrimp(Litopenaeus vannamei)[J]. Comp Biochem Physiol B Biochem Mol Biol, 2011, 158(1):99-105.
doi: 10.1016/j.cbpb.2010.10.004 URL |
[23] |
Grbavčić S, Bezbradica D, Izrael-Živković L, et al. Production of lipase and protease from an indigenous Pseudomonas aeruginosa strain and their evaluation as detergent additives:compatibility study with detergent ingredients and washing performance[J]. Bioresour Technol, 2011, 102(24):11226-11233.
doi: 10.1016/j.biortech.2011.09.076 URL |
[24] |
Fetzner S, Steiner RA. Cofactor-independent oxidases and oxygenases[J]. Appl Microbiol Biotechnol, 2010, 86(3):791-804.
doi: 10.1007/s00253-010-2455-0 pmid: 20157809 |
[25] |
Kapoor M, Gupta MN. Lipase promiscuity and its biochemical applications[J]. Process Biochem, 2012, 47(4):555-569.
doi: 10.1016/j.procbio.2012.01.011 URL |
[26] |
Snellman EA, Sullivan ER, Colwell RR. Purification and properties of the extracellular lipase, LipA, of Acinetobacter sp. RAG-1[J]. Eur J Biochem, 2002, 269(23):5771-5779.
pmid: 12444965 |
[27] |
Zheng XM, Wu NF, Fan YL. Characterization of a novel lipase and its specific foldase from Acinetobacter sp. XMZ-26[J]. Process Biochem, 2012, 47(4):643-650.
doi: 10.1016/j.procbio.2012.01.005 URL |
[28] | 桑鹏, 刘林波, 陈贵元, 等. 大理弥渡热泉耐热脂肪酶产生菌的筛选及其酶活性研究[J]. 中国饲料, 2020(3):27-31. |
Sang P, Liu LB, Chen GY, et al. Isolation and identification of a strain producing thermostable lipase and studying on its enzymatic properties[J]. China Feed, 2020(3):27-31. | |
[29] |
陈体强, 徐晓兰, 石林春, 等. 紫芝栽培品种‘武芝2号’(‘紫芝S2’)全基因组测序及分析[J]. 生物技术通报, 2021, 37(11):42-56.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1158 |
Chen TQ, Xu XL, Shi LC, et al. Sequencing and analysis of the whole genome of Zizhi cultivar ‘Wuzhi No. 2’(Ganoderma sp. strain Zizhi S2)[J]. Biotechnol Bull, 2021, 37(11):42-56. | |
[30] | Singh M, de Silva PM, Al-Saadi Y, et al. Characterization of extremely drug-resistant and hypervirulent Acinetobacter baumannii AB030[J]. Antibiotics(Basel), 2020, 9(6):328. |
[31] |
Darling ACE, Mau B, Blattner FR, et al. Mauve:multiple alignment of conserved genomic sequence with rearrangements[J]. Genome Res, 2004, 14(7):1394-1403.
pmid: 15231754 |
[1] | WANG Teng-hui, GE Wen-dong, LUO Ya-fang, FAN Zhen-yu, WANG Yu-shu. Gene Mapping of Kale White Leaves Based on Whole Genome Re-sequencing of Extreme Mixed Pool(BSA) [J]. Biotechnology Bulletin, 2023, 39(9): 176-182. |
[2] | CHEN Jin-hang, ZHANG Yi, ZHANG Jun-tao, WEI Ben-mei, WANG Hong-xun, ZHENG Ming-ming. Preparation of Immobilized Lipase for the Solvent-free Synthesis of Cinnamyl Acetate [J]. Biotechnology Bulletin, 2023, 39(9): 97-104. |
[3] | FANG Lan, LI Yan-yan, JIANG Jian-wei, CHENG Sheng, SUN Zheng-xiang, ZHOU Yi. Isolation, Identification and Growth-promoting Characteristics of Endohyphal Bacterium 7-2H from Endophytic Fungi of Spiranthes sinensis [J]. Biotechnology Bulletin, 2023, 39(8): 272-282. |
[4] | GUO Shao-hua, MAO Hui-li, LIU Zheng-quan, FU Mei-yuan, ZHAO Ping-yuan, MA Wen-bo, LI Xu-dong, GUAN Jian-yi. Whole Genome Sequencing and Comparative Genome Analysis of a Fish-derived Pathogenic Aeromonas Hydrophila Strain XDMG [J]. Biotechnology Bulletin, 2023, 39(8): 291-306. |
[5] | ZHANG Zhi-xia, LI Tian-pei, ZENG Hong, ZHU Xi-xian, YANG Tian-xiong, MA Si-nan, HUANG Lei. Genome Sequencing and Bioinformatics Analysis of Gelidibacter sp. PG-2 [J]. Biotechnology Bulletin, 2023, 39(3): 290-300. |
[6] | HE Meng-ying, LIU Wen-bin, LIN Zhen-ming, LI Er-tong, WANG Jie, JIN Xiao-bao. Whole Genome Sequencing and Analysis of an Anti Gram-positive Bacterium Gordonia WA4-43 [J]. Biotechnology Bulletin, 2023, 39(2): 232-242. |
[7] | ZHANG Ao-jie, LI Qing-yun, SONG Wen-hong, YAN Shao-hui, TANG Ai-xing, LIU You-yan. Whole Genome Sequencing Analysis of a Phenol-degrading Strain Alcaligenes faecalis JF101 [J]. Biotechnology Bulletin, 2023, 39(10): 292-303. |
[8] | WANG Shuai, LV Hong-rui, ZHANG Hao, WU Zhan-wen, XIAO Cui-hong, SUN Dong-mei. Whole-Genome Sequencing Identification of Phosphate-solubilizing Bacteria PSB-R and Analysis of Its Phosphate-solubilizing Properties [J]. Biotechnology Bulletin, 2023, 39(1): 274-283. |
[9] | WEN Chang, LIU Chen, LU Shi-yun, XU Zhong-bing, AI Chao-fan, LIAO Han-peng, ZHOU Shun-gui. Biological Characteristics and Genome Analysis of a Novel Multidrug-resistant Shigella flexneri Phage [J]. Biotechnology Bulletin, 2022, 38(9): 127-135. |
[10] | LI Ji-hong, JING Yu-ling, MA Gui-zhen, GUO Rong-jun, LI Shi-dong. Genome Construction of Achromobacter 77 and Its Characteristics on Chemotaxis and Antibiotic Resistance [J]. Biotechnology Bulletin, 2022, 38(9): 136-146. |
[11] | ZHAO A-hui, WANG Xian-guo, DONG Jian, HOU Zuo, ZHAO Wan-chun, GAO Xiang, YANG Ming-ming. Advances in the Study of Phospholipase C Response to Stress in Plants [J]. Biotechnology Bulletin, 2021, 37(5): 154-164. |
[12] | WU Rong, CAO Jia-rui, CAO Jun, LIU Fei-xiang, YANG Meng, SU Er-zheng. Expression and Fermentation Optimization of Candida antarctica Lipase B in Escherichia coli [J]. Biotechnology Bulletin, 2021, 37(2): 138-148. |
[13] | CHEN Ti-qiang, XU Xiao-lan, SHI Lin-chun, ZHONG Li-Yi. Sequencing and Analysis of the Whole Genome of Zizhi Cultivar ‘Wuzhi No.2’(Ganoderma sp. strain Zizhi S2) [J]. Biotechnology Bulletin, 2021, 37(11): 42-56. |
[14] | GUO He-bao, WANG Xing, HE Shan-wen, ZHANG Xiao-xia. Phenotypic Characteristics Combined with Genomic Analysis to Identify Different Colony Morphology Bacillus velezensis ACCC 19742 [J]. Biotechnology Bulletin, 2020, 36(2): 142-148. |
[15] | HUANG Yang-tian, LU Yu-biao, HUANG Yi-tie, MENG Fan-long, XU Kai-wen, LI Peng. Screening and Identification of Marine Electricity-producing and Lipase-producing Bacteria and Preliminary Study on Its Culture Conditions [J]. Biotechnology Bulletin, 2020, 36(12): 91-97. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||