Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (6): 38-48.doi: 10.13560/j.cnki.biotech.bull.1985.2024-1239
Previous Articles Next Articles
Received:2024-12-23
Online:2025-06-26
Published:2025-06-30
Contact:
LIU Yong-bo
E-mail:yizhou623105@gmail.com;liuyb@craes.org.cn
ZHOU Yi, LIU Yong-bo. Research Progress in the Mechanisms and Functions of Gene Loss in Genome Evolution[J]. Biotechnology Bulletin, 2025, 41(6): 38-48.
Fig. 1 Schematic molecular mechanisms of gene lossA: DNA replication errors. Mismatch and mutation may occur during DNA replication. B: Double-strand break repair. Non-homologous end joining (NHEJ) and homologous recombination repair (HR); the former repairs breaks by directly ligating broken ends, while the latter utilizes a homologous template to precise repair. C: Transposition activity. Transposable elements, mediated by MuA transposase, are transferred from donor DNA to target DNA, resulting in the generation of target site duplications (TSD). D: Chromosome structural variations. Includes deletions, duplications, inversions, insertions and translocations
物种 Species | 基因组大小 Genome size (Gb) | 基因 Gene | 丢失机制 Loss mechanisms | 参考文献 Reference |
|---|---|---|---|---|
| 人类 Homo sapiens | 约3.1 | L-古洛糖酸内酯氧化酶 | 基因失活,无法自行合成维生素 C | [ |
| 裸鼹鼠 Heterocephalus glaber | 约2.5 | 气味感知能力下降,依赖其他感官 | 地下生活减少嗅觉依赖,气味基因丢失,触觉或听觉增强 | [ |
| 蝾螈 Salamandridae | 14-130 | 增强再生能力 | 基因丢失降低炎症反应,提高组织再生能力 | [ |
| 冰鱼 Channichthyidae | - | 血红蛋白基因 | 基因缺失和假基因化影响氧气运输 | [ |
| 海豚 Delphinidae | 约2.5 | 嗅觉受体基因 | 水生环境嗅觉依赖性降低,相关基因假基因化 | [ |
| 墨西哥盲洞鱼 Astyanax mexicanus | 约1.4 | 眼发育基因(如视蛋白基因) | 黑暗环境中视觉基因丢失或突变 | [ |
| 鸡 Gallus gallus | 约1.0 | 牙釉质基因(如牙釉蛋白基因) | 牙齿退化导致牙釉质基因丢失 | [ |
| 须鲸 Mysticeti | - | 牙发育基因 | 从牙齿到鲸须的进化过渡中,相关基因假基因化 | [ |
| 大熊猫 Ailuropoda melanoleuca | 约2.4 | Tas1r1基因 | 鲜味受体基因假基因化,导致鲜味感知丧失 | [ |
| 象鸟 Aepyornithidae | - | 与飞行相关基因(如肌肉发育基因) | 不飞行导致相关基因丢失和突变 | [ |
Table 1 Examples of gene loss
物种 Species | 基因组大小 Genome size (Gb) | 基因 Gene | 丢失机制 Loss mechanisms | 参考文献 Reference |
|---|---|---|---|---|
| 人类 Homo sapiens | 约3.1 | L-古洛糖酸内酯氧化酶 | 基因失活,无法自行合成维生素 C | [ |
| 裸鼹鼠 Heterocephalus glaber | 约2.5 | 气味感知能力下降,依赖其他感官 | 地下生活减少嗅觉依赖,气味基因丢失,触觉或听觉增强 | [ |
| 蝾螈 Salamandridae | 14-130 | 增强再生能力 | 基因丢失降低炎症反应,提高组织再生能力 | [ |
| 冰鱼 Channichthyidae | - | 血红蛋白基因 | 基因缺失和假基因化影响氧气运输 | [ |
| 海豚 Delphinidae | 约2.5 | 嗅觉受体基因 | 水生环境嗅觉依赖性降低,相关基因假基因化 | [ |
| 墨西哥盲洞鱼 Astyanax mexicanus | 约1.4 | 眼发育基因(如视蛋白基因) | 黑暗环境中视觉基因丢失或突变 | [ |
| 鸡 Gallus gallus | 约1.0 | 牙釉质基因(如牙釉蛋白基因) | 牙齿退化导致牙釉质基因丢失 | [ |
| 须鲸 Mysticeti | - | 牙发育基因 | 从牙齿到鲸须的进化过渡中,相关基因假基因化 | [ |
| 大熊猫 Ailuropoda melanoleuca | 约2.4 | Tas1r1基因 | 鲜味受体基因假基因化,导致鲜味感知丧失 | [ |
| 象鸟 Aepyornithidae | - | 与飞行相关基因(如肌肉发育基因) | 不飞行导致相关基因丢失和突变 | [ |
| 1 | Nei M. Mutation-driven evolution [M]. Oxford: Oxford University Press, 2013. |
| 2 | Lynch M, Walsh B. The origins of genome architecture [M]. Sinauer Associates Sunderland, MA, 2007. |
| 3 | Albalat R, Cañestro C. Evolution by gene loss [J]. Nat Rev Genet, 2016, 17(7): 379-391. |
| 4 | Olson MV. When less is more: gene loss as an engine of evolutionary change [J]. Am J Hum Genet, 1999, 64(1): 18-23. |
| 5 | Sánchez-Serna G, Badia-Ramentol J, Bujosa P, et al. Less, but more: new insights from appendicularians on chordate fgf evolution and the divergence of tunicate lifestyles [J]. Mol Biol Evol, 2025, 42(1): msae260. |
| 6 | Turakhia Y, Chen HI, Marcovitz A, et al. A fully-automated method discovers loss of mouse-lethal and human-monogenic disease genes in 58 mammals [J]. Nucleic Acids Res, 2020, 48(16): e91. |
| 7 | Lupski JR, Stankiewicz P. Genomic disorders: molecular mechanisms for rearrangements and conveyed phenotypes [J]. PLoS Genet, 2005, 1(6): e49. |
| 8 | Moran NA, Mira A. The process of genome shrinkage in the obligate symbiont Buchnera aphidicola [J]. Genome Biol, 2001, 2(12): RESEARCH0054. |
| 9 | Demuth JP, Hahn MW. The life and death of gene families [J]. Bioessays, 2009, 31(1): 29-39. |
| 10 | Johri P, Gout JF, Doak TG, et al. A population-genetic lens into the process of gene loss following whole-genome duplication [J]. Mol Biol Evol, 2022, 39(6): msac118. |
| 11 | Snel B, Bork P, Huynen MA. Genomes in flux: the evolution of archaeal and proteobacterial gene content [J]. Genome Res, 2002, 12(1): 17-25. |
| 12 | Kvitek DJ, Sherlock G. Whole genome, whole population sequencing reveals that loss of signaling networks is the major adaptive strategy in a constant environment [J]. PLoS Genet, 2013, 9(11): e1003972. |
| 13 | McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria [J]. Nat Rev Microbiol, 2011, 10(1): 13-26. |
| 14 | Keeling PJ, Corradi N, Morrison HG, et al. The reduced genome of the parasitic microsporidian Enterocytozoon bieneusi lacks genes for core carbon metabolism [J]. Genome Biol Evol, 2010, 2: 304-309. |
| 15 | Protas ME, Hersey C, Kochanek D, et al. Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism [J]. Nat Genet, 2006, 38(1): 107-111. |
| 16 | Jeffery WR. Regressive evolution in Astyanax cavefish [J]. Annu Rev Genet, 2009, 43: 25-47. |
| 17 | Donoghue PCJ, Purnell MA. Genome duplication, extinction and vertebrate evolution [J]. Trends Ecol Evol, 2005, 20(6): 312-319. |
| 18 | Chan YF, Marks ME, Jones FC, et al. Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer [J]. Science, 2010, 327(5963): 302-305. |
| 19 | Ecological developmental biology: integrating epigenetics, medicine, and evolution [J]. Yale J Biol Med, 2009, 82(4): 231-232. |
| 20 | Peter Gogarten J, Townsend JP. Horizontal gene transfer, genome innovation and evolution [J]. Nat Rev Microbiol, 2005, 3(9): 679-687. |
| 21 | Innan H, Kondrashov F. The evolution of gene duplications: classifying and distinguishing between models [J]. Nat Rev Genet, 2010, 11(2): 97-108. |
| 22 | Richter DJ, Fozouni P, Eisen MB, et al. Gene family innovation, conservation and loss on the animal stem lineage [J]. eLife, 2018, 7: e34226. |
| 23 | Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes [J]. Science, 2000, 290(5494): 1151-1155. |
| 24 | Zhang JZ. Evolution by gene duplication: an update [J]. Trends Ecol Evol, 2003, 18(6): 292-298. |
| 25 | Tautz D, Domazet-Lošo T. The evolutionary origin of orphan genes [J]. Nat Rev Genet, 2011, 12(10): 692-702. |
| 26 | Levinson G, Gutman GA. Slipped-strand mispairing: a major mechanism for DNA sequence evolution [J]. Mol Biol Evol, 1987, 4(3): 203-221. |
| 27 | Hastings PJ, Lupski JR, Rosenberg SM, et al. Mechanisms of change in gene copy number [J]. Nat Rev Genet, 2009, 10(8): 551-564. |
| 28 | Sturtevant AH, Beadle GW. The relations of inversions in the X chromosome of Drosophila melanogaster to crossing over and disjunction [J]. Genetics, 1936, 21(5): 554-604. |
| 29 | Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution [J]. Nat Rev Genet, 2009, 10(10): 691-703. |
| 30 | Van de Peer Y, Mizrachi E, Marchal K. The evolutionary significance of polyploidy [J]. Nat Rev Genet, 2017, 18: 411-424. |
| 31 | Chen JM, Cooper DN, Chuzhanova N, et al. Gene conversion: mechanisms, evolution and human disease [J]. Nat Rev Genet, 2007, 8(10): 762-775. |
| 32 | Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway [J]. Annu Rev Biochem, 2010, 79: 181-211. |
| 33 | McVey M, Lee SE. MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings [J]. Trends Genet, 2008, 24(11): 529-538. |
| 34 | Waterworth WM, Drury GE, Bray CM, et al. Repairing breaks in the plant genome: the importance of keeping it together [J]. New Phytol, 2011, 192(4): 805-822. |
| 35 | Ceccaldi R, Rondinelli B, D'Andrea AD. Repair pathway choices and consequences at the double-strand break [J]. Trends Cell Biol, 2016, 26(1): 52-64. |
| 36 | Jr KHH. Mobile elements: drivers of genome evolution [J]. Science, 2004, 303(5664): 1626-1632. |
| 37 | Han K, Sen SK, Wang JX, et al. Genomic rearrangements by LINE-1 insertion-mediated deletion in the human and chimpanzee lineages [J]. Nucleic Acids Res, 2005, 33(13): 4040-4052. |
| 38 | Siguier P, Gourbeyre E, Chandler M. Bacterial insertion sequences: their genomic impact and diversity [J]. FEMS Microbiol Rev, 2014, 38(5): 865-891. |
| 39 | Lisch D. How important are transposons for plant evolution? [J]. Nat Rev Genet, 2013, 14(1): 49-61. |
| 40 | Kimura M. The neutral theory of molecular evolution [J]. Sci Am, 1979, 241(5): 98-100, 102, 108 passim. |
| 41 | Sultana T, Zamborlini A, Cristofari G, et al. Integration site selection by retroviruses and transposable elements in eukaryotes [J]. Nat Rev Genet, 2017, 18(5): 292-308. |
| 42 | Johnson WE. Origins and evolutionary consequences of ancient endogenous retroviruses [J]. Nat Rev Microbiol, 2019, 17(6): 355-370. |
| 43 | Koonin EV, Wolf YI. Genomics of bacteria and Archaea: the emerging dynamic view of the prokaryotic world [J]. Nucleic Acids Res, 2008, 36(21): 6688-6719. |
| 44 | Feuk L, Carson AR, Scherer SW. Structural variation in the human genome [J]. Nat Rev Genet, 2006, 7(2): 85-97. |
| 45 | Freeling M. Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition [J]. Annu Rev Plant Biol, 2009, 60: 433-453. |
| 46 | Frankham R, Briscoe DA, Ballou JD. Introduction to conservation genetics [M]. New York: Cambridge University Press, 2002. |
| 47 | Frankham R. Conservation genetics [M]//Encyclopedia of Genetics. New York: Routledge, 2014: 910-914. |
| 48 | Nielsen R. Molecular signatures of natural selection [J]. Annu Rev Genet, 2005, 39: 197-218. |
| 49 | Shigenobu S, Watanabe H, Hattori M, et al. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS [J]. Nature, 2000, 407(6800): 81-86. |
| 50 | Moran NA, Bennett GM. The tiniest tiny genomes [J]. Annu Rev Microbiol, 2014, 68: 195-215. |
| 51 | Nowoshilow S, Schloissnig S, Fei JF, et al. The axolotl genome and the evolution of key tissue formation regulators [J]. Nature, 2018, 554(7690): 50-55. |
| 52 | Sharma V, Hecker N, Roscito JG, et al. A genomics approach reveals insights into the importance of gene losses for mammalian adaptations [J]. Nat Commun, 2018, 9(1): 1215. |
| 53 | Sidell BD, O'Brien KM. When bad things happen to good fish: the loss of hemoglobin and myoglobin expression in Antarctic icefishes [J]. J Exp Biol, 2006, 209(Pt 10): 1791-1802. |
| 54 | Zhao HB, Yang JR, Xu HL, et al. Pseudogenization of the umami taste receptor gene Tas1r1 in the giant Panda coincided with its dietary switch to bamboo [J]. Mol Biol Evol, 2010, 27(12): 2669-2673. |
| 55 | Kim EB, Fang XD, Fushan AA, et al. Genome sequencing reveals insights into physiology and longevity of the naked mole rat [J]. Nature, 2011, 479(7372): 223-227. |
| 56 | Cui J, Pan YH, Zhang YJ, et al. Progressive pseudogenization: vitamin C synthesis and its loss in bats [J]. Mol Biol Evol, 2011, 28(2): 1025-1031. |
| 57 | McGowen MR, Clark C, Gatesy J. The vestigial olfactory receptor subgenome of odontocete whales: phylogenetic congruence between gene-tree reconciliation and supermatrix methods [J]. Syst Biol, 2008, 57(4): 574-590. |
| 58 | Meredith RW, Zhang GJ, Thomas P Gilbert M, et al. Evidence for a single loss of mineralized teeth in the common avian ancestor [J]. Science, 2014, 346(6215): 1254390. |
| 59 | Deméré TA, McGowen MR, Berta A, et al. Morphological and molecular evidence for a stepwise evolutionary transition from teeth to baleen in mysticete whales [J]. Syst Biol, 2008, 57(1): 15-37. |
| 60 | Mitchell KJ, Llamas B, Soubrier J, et al. Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolution [J]. Science, 2014, 344(6186): 898-900. |
| 61 | Wolfe KH, Morden CW, Palmer JD. Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant [J]. Proc Natl Acad Sci USA, 1992, 89(22): 10648-10652. |
| 62 | Xu ZZ, Zhou GS, Shimizu H. Plant responses to drought and rewatering [J]. Plant Signal Behav, 2010, 5(6): 649-654. |
| 63 | Dassanayake M, Oh DH, Haas JS, et al. The genome of the extremophile crucifer Thellungiella parvula [J]. Nat Genet, 2011, 43(9): 913-918. |
| 64 | Blount ZD, Borland CZ, Lenski RE. Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli [J]. Proc Natl Acad Sci USA, 2008, 105(23): 7899-7906. |
| 65 | Fraser CM, Gocayne JD, White O, et al. The minimal gene complement of Mycoplasma genitalium [J]. Science, 1995, 270(5235): 397-403. |
| 66 | Stephens RS, Kalman S, Lammel C, et al. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis [J]. Science, 1998, 282(5389): 754-759. |
| 67 | So WL, Nong WY, Xie YC, et al. Myriapod genomes reveal ancestral horizontal gene transfer and hormonal gene loss in millipedes [J]. Nat Commun, 2022, 13(1): 3010. |
| 68 | Huelsmann M, Hecker N, Springer MS, et al. Genes lost during the transition from land to water in cetaceans highlight genomic changes associated with aquatic adaptations [J]. Sci Adv, 2019, 5(9): eaaw6671. |
| 69 | Guijarro-Clarke C, Holland PWH, Paps J. Widespread patterns of gene loss in the evolution of the animal Kingdom [J]. Nat Ecol Evol, 2020, 4(4): 519-523. |
| 70 | Xu SH, Shao S, Feng X, et al. Adaptation in unstable environments and global gene losses: small but stable gene networks by the may-Wigner theory [J]. Mol Biol Evol, 2024, 41(4): msae059. |
| 71 | Kitony JK, Colt K, Abramson BW, et al. Chromosome-level baobab genome illuminates its evolutionary trajectory and environmental adaptation [J]. Nat Commun, 2024, 15: 8833. |
| 72 | Nakjang S, Williams TA, Heinz E, et al. Reduction and expansion in microsporidian genome evolution: new insights from comparative genomics [J]. Genome Biol Evol, 2013, 5(12): 2285-2303. |
| 73 | Bhattacharya D, Qiu H, Lee JM, et al. When less is more: red algae as models for studying gene loss and genome evolution in eukaryotes [J]. Crit Rev Plant Sci, 2018, 37(1): 81-99. |
| 74 | Long QM, Cao S, Huang GZ, et al. Population comparative genomics discovers gene gain and loss during grapevine domestication [J]. Plant Physiol, 2024, 195(2): 1401-1413. |
| 75 | Huang XH, Kurata N, Wei XH, et al. A map of rice genome variation reveals the origin of cultivated rice [J]. Nature, 2012, 490(7421): 497-501. |
| 76 | Axelsson E, Ratnakumar A, Arendt ML, et al. The genomic signature of dog domestication reveals adaptation to a starch-rich diet [J]. Nature, 2013, 495(7441): 360-364. |
| 77 | Bachtrog D. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration [J]. Nat Rev Genet, 2013, 14(2): 113-124. |
| 78 | Hill GE. Mitonuclear ecology [J]. Mol Biol Evol, 2015, 32(8): 1917-1927. |
| 79 | Bisgaard H, Simpson A, Palmer CNA, et al. Gene-environment interaction in the onset of eczema in infancy: filaggrin loss-of-function mutations enhanced by neonatal cat exposure [J]. PLoS Med, 2008, 5(6): e131. |
| 80 | Adams KL, Palmer JD. Evolution of mitochondrial gene content: gene loss and transfer to the nucleus [J]. Mol Phylogenet Evol, 2003, 29(3): 380-395. |
| 81 | Breton S, Capt C, Guerra D, et al. Sex-determining mechanisms in bivalves [M]//Transitions Between Sexual Systems. Cham: Springer International Publishing, 2018: 165-192. |
| 82 | Horn M. Chlamydiae as symbionts in eukaryotes [J]. Annu Rev Microbiol, 2008, 62: 113-131. |
| 83 | Glass JI, Assad-Garcia N, Alperovich N, et al. Essential genes of a minimal bacterium [J]. Proc Natl Acad Sci USA, 2006, 103(2): 425-430. |
| 84 | Papp B, Pál C, Hurst LD. Dosage sensitivity and the evolution of gene families in yeast [J]. Nature, 2003, 424(6945): 194-197. |
| 85 | Makino T, McLysaght A. Ohnologs in the human genome are dosage balanced and frequently associated with disease [J]. Proc Natl Acad Sci USA, 2010, 107(20): 9270-9274. |
| 86 | Koonin EV. Evolution of genome architecture [J]. Int J Biochem Cell Biol, 2009, 41(2): 298-306. |
| 87 | Hahn MW, Conant GC, Wagner A. Molecular evolution in large genetic networks: does connectivity equal constraint? [J]. J Mol Evol, 2004, 58(2): 203-211. |
| 88 | Wolf YI, Koonin EV. Genome reduction as the dominant mode of evolution [J]. Bioessays, 2013, 35(9): 829-837. |
| 89 | Van de Peer Y, Maere S, Meyer A. The evolutionary significance of ancient genome duplications [J]. Nat Rev Genet, 2009, 10(10): 725-732. |
| 90 | Wicke S, Müller KF, de Pamphilis CW, et al. Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the broomrape family [J]. Plant Cell, 2013, 25(10): 3711-3725. |
| 91 | Yoshida S, Cui SK, Ichihashi Y, et al. The haustorium, a specialized invasive organ in parasitic plants [J]. Annu Rev Plant Biol, 2016, 67: 643-667. |
| 92 | Helsen J, Voordeckers K, Vanderwaeren L, et al. Gene loss predictably drives evolutionary adaptation [J]. Mol Biol Evol, 2020, 37(10): 2989-3002. |
| 93 | Krylov DM, Wolf YI, Rogozin IB, et al. Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution [J]. Genome Res, 2003, 13(10): 2229-2235. |
| 94 | Gout JF, Hao Y, Johri P, et al. Dynamics of gene loss following ancient whole-genome duplication in the cryptic Paramecium complex [J]. Mol Biol Evol, 2023, 40(5): msad107. |
| 95 | Zhang JZ, Yang JR. Determinants of the rate of protein sequence evolution [J]. Nat Rev Genet, 2015, 16(7): 409-420. |
| 96 | Birchler JA, Veitia RA. The gene balance hypothesis: from classical genetics to modern genomics [J]. Plant Cell, 2007, 19(2): 395-402. |
| 97 | Veitia RA, Bottani S, Birchler JA. Cellular reactions to gene dosage imbalance: genomic, transcriptomic and proteomic effects [J]. Trends Genet, 2008, 24(8): 390-397. |
| 98 | Edger PP, Chris Pires J. Gene and genome duplications: the impact of dosage-sensitivity on the fate of nuclear genes [J]. Chromosome Res, 2009, 17(5): 699-717. |
| 99 | Langham RJ, Walsh J, Dunn M, et al. Genomic duplication, fractionation and the origin of regulatory novelty [J]. Genetics, 2004, 166(2): 935-945. |
| 100 | Bowers JE, Chapman BA, Rong JK, et al. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events [J]. Nature, 2003, 422(6930): 433-438. |
| 101 | Makino T, McLysaght A. Positionally biased gene loss after whole genome duplication: evidence from human, yeast, and plant [J]. Genome Res, 2012, 22(12): 2427-2435. |
| 102 | Liu SY, Liu YM, Yang XH, et al. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes [J]. Nat Commun, 2014, 5: 3930. |
| 103 | Thomas BC, Pedersen B, Freeling M. Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes [J]. Genome Res, 2006, 16(7): 934-946. |
| 104 | Bergero R, Qiu S, Charlesworth D. Gene loss from a plant sex chromosome system [J]. Curr Biol, 2015, 25(9): 1234-1240. |
| 105 | Cortez D, Marin R, Toledo-Flores D, et al. Origins and functional evolution of Y chromosomes across mammals [J]. Nature, 2014, 508(7497): 488-493. |
| 106 | Touchon M, Rocha EPC. Causes of insertion sequences abundance in prokaryotic genomes [J]. Mol Biol Evol, 2007, 24(4): 969-981. |
| 107 | Scannell DR, Carolin Frank A, Conant GC, et al. Independent sorting-out of thousands of duplicated gene pairs in two yeast species descended from a whole-genome duplication [J]. Proc Natl Acad Sci USA, 2007, 104(20): 8397-8402. |
| 108 | Scannell DR, Byrne KP, Gordon JL, et al. Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts [J]. Nature, 2006, 440(7082): 341-345. |
| 109 | Qian WF, Liao BY, Chang AY, et al. Maintenance of duplicate genes and their functional redundancy by reduced expression [J]. Trends Genet, 2010, 26(10): 425-430. |
| 110 | Conant GC, Wolfe KH. Turning a hobby into a job: how duplicated genes find new functions [J]. Nat Rev Genet, 2008, 9(12): 938-950. |
| 111 | Ohno S. Evolution by gene duplication [M]. Berlin: Springer Science & Business Media, 2013. |
| 112 | Force A, Lynch M, Pickett FB, et al. Preservation of duplicate genes by complementary, degenerative mutations [J]. Genetics, 1999, 151(4): 1531-1545. |
| 113 | Soucy SM, Huang JL, Gogarten JP. Horizontal gene transfer: building the web of life [J]. Nat Rev Genet, 2015, 16(8): 472-482. |
| 114 | Wright GD. The antibiotic resistome: the nexus of chemical and genetic diversity [J]. Nat Rev Microbiol, 2007, 5(3): 175-186. |
| [1] | GUO Tao, AI Li-jiao, ZOU Shi-hui, ZHOU Ling, LI Xue-mei. Functional Study of CjRAV1 from Camellia japonica in Regulating Flowering Delay [J]. Biotechnology Bulletin, 2025, 41(6): 208-217. |
| [2] | LIU Yuan, ZHAO Ran, LU Zhen-fang, LI Rui-li. Research Progress in the Biological Metabolic Pathway and Functions of Plant Carotenoids [J]. Biotechnology Bulletin, 2025, 41(5): 23-31. |
| [3] | LIU Hong-li, MA Yi-dan, WANG Wan-ru, YANG Ya-ru, HE Dan, LIU Yi-ping, KONG De-zheng. Cloning and Functional Analysis of NnCYP707A1 Gene from Lotus [J]. Biotechnology Bulletin, 2025, 41(5): 197-207. |
| [4] | TIAN Qin, LIU Kui, WU Xiang-wei, JI Yuan-yuan, CAO Yi-bo, ZHANG Ling-yun. Functional Study of Transcription Factor VcMYB17 in Regulating Drought Tolerance in Blueberry [J]. Biotechnology Bulletin, 2025, 41(4): 198-210. |
| [5] | WU Ding-jie, CHEN Ying-ying, XU Jing, LIU Yuan, ZHANG Hang, LI Rui-li. Research Progress in Plant Gibberellin Oxidase and Its Functions [J]. Biotechnology Bulletin, 2024, 40(7): 43-54. |
| [6] | CHEN Ying-e, LIANG Qiao-lan. Research Progress in the Effects of Plant Abscisic Acid and Its Receptor Gene PYL9 [J]. Biotechnology Bulletin, 2024, 40(12): 1-11. |
| [7] | HOU Ying-xiang, FEI Si-tian, SONG Song-quan, LUO Yong, ZHANG Chao. Research Progress in MADS-box Family in Rice [J]. Biotechnology Bulletin, 2024, 40(11): 103-112. |
| [8] | LIU Hui, LU Yang, YE Xi-miao, ZHOU Shuai, LI Jun, TANG Jian-bo, CHEN En-fa. Comparative Transcriptome Analysis of Cadmium Stress Response Induced by Exogenous Sulfur in Tartary Buckwheat [J]. Biotechnology Bulletin, 2023, 39(5): 177-191. |
| [9] | HU Ming-yue, YANG Yu, GUO Yang-dong, ZHANG Xi-chun. Functional Analysis of SlMYB96 Gene in Tomato Under Cold Stress [J]. Biotechnology Bulletin, 2023, 39(4): 236-245. |
| [10] | ZHU Ying-xuan, LI Ke-jing, HE Min, ZHENG Dao-qiong. Research Progress in the Exploring Genomic Variations Driven by Stress Factors Using the Yeast Model [J]. Biotechnology Bulletin, 2023, 39(11): 191-204. |
| [11] | ZHANG Hao, LI Zhe, GUO Kai, HUANG Yan-hua, HAO Yong-ren. Functional Analysis of TvGCN5 Gene Encoding Histone Acetylase from Trichoderma viride Tv-1511 [J]. Biotechnology Bulletin, 2022, 38(5): 136-148. |
| [12] | ZHANG Ze-ying, FAN Qing-feng, DENG Yun-feng, WEI Ting-zhou, ZHOU Zheng-fu, ZHOU Jian, WANG Jin, JIANG Shi-jie. Whole Genome Sequencing and Comparative Genomic Analysis of a High-yield Lipase-producing Strain WCO-9 [J]. Biotechnology Bulletin, 2022, 38(10): 216-225. |
| [13] | LIU Sha-yu, CAO Jian, LI Meng, LIU Zhi-qiang, LI Xiao-yu. Biological Function of a Zn2Cys6 Transcription Factor CgAswA in Colletotrichum gloeosporioides [J]. Biotechnology Bulletin, 2021, 37(9): 161-170. |
| [14] | CHEN Ti-qiang, XU Xiao-lan, SHI Lin-chun, ZHONG Li-Yi. Sequencing and Analysis of the Whole Genome of Zizhi Cultivar ‘Wuzhi No.2’(Ganoderma sp. strain Zizhi S2) [J]. Biotechnology Bulletin, 2021, 37(11): 42-56. |
| [15] | CHEN Xue-lian, JIANG Gao-fei, ZHONG Zeng-tao. Research Progress of Horizontal Gene Transfer in Rhizobia Evolution [J]. Biotechnology Bulletin, 2019, 35(10): 18-24. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
