Biotechnology Bulletin ›› 2013, Vol. 0 ›› Issue (1): 49-55.
• Reviews and Monographs • Previous Articles Next Articles
Zhou Qiuxiang1,2Yu Xiaobin3 ,Tu Guoquan1, Wang Qiang3, Hu Wenjun3, Li Hanguang1,3
Received:
2012-07-02
Revised:
2013-01-31
Online:
2013-01-30
Published:
2013-01-30
Zhou QiuxiangYu Xiaobin, Tu Guoquan, Wang Qiang, Hu Wenjun, Li Hanguang1, 3. Advances in Metabonomics and Its Applications[J]. Biotechnology Bulletin, 2013, 0(1): 49-55.
[1] Krastanov A. Metabolomics-the state of art[J]. Biotechnol andBiotechnol, 2010, 24(1):1537-1543. [2] Karl HO, Nelly A, Singh B, et al. Metabonomics classifies pathwaysaffected by bioacfive compounds. Artificial neural network classificationof NMR spectra of plant extracts[J]. Phytochemistry, 2003,62 :971-985. [3] Fiehn O. Metabolomics-the link between genotypes and phenotypes[J]. Plant Mol Biol, 2002, 48(1-2):155-171. [4] Lindon JC, Holmes E, Bolland ME, et al. Metabonomics technologiesand their applications in physiological monitoring, drug safety assessmentand disease diagnosis[J]. Biomarkers, 2004, 9(1):1-31. [5] Nicholson JK, Lindon JC, Holmes E. “Metabonomics”:understandingthe metabolic responses of living systems to pathophysiological stimulivia multivariate statisstical analysis of biological NMR spectroscopicdata[J]. Xenobiotica, 1999, 29(11):1181-1189. [6] Vander GJ, Leegwater DC. Urine profile analysis by field desorptionmass spectrometry, a technique for detecring metabolites of xenobiotics.Application to 3, 5-dinitro-2-hydroxy toluene[J]. BiomedMass Spectrom, 1983, 10(1):1-4. [7] Preeti B, Stephanie M, Moon KH, et al. PlantMetabolomics.org :AWeb Portal for Plant Metabolomics Experiments[J]. Plant Physiol,2010, 152 :1807-1816. [8] Dettmer K, Hammock BD. Metabolomics—A new exciting fieldwithin the “omics” sciences[J]. Environ Health Perspect, 2004,112(7):A396-A397. [9] Taylor J, Buckingham MJ, Sadler PJ. Application of metabolomicsto plant genotype discrimination using statistics and machine learning[J]. Bioinforrnatics, 2002, 18 :241-248. [10] Jan S. Application of NMR in plant metabolomics :Techniques,生物技术通报 Biotechnology Bulletin 2013年第1期54problems and prospects[J]. Phytochem Anal, 2010, 21 :14-21. [11] Konstantina S, Lan D, Wilson, et al. HILIC-UPLC-MS for exploratoryurinary metabolic profiling in toxicological Studies[J].Anal Chem, 2011, 83, 382-390. [12] Oakman C, Tenoril C, Biganzoli L, et al. Uncovering the metabolomicfingerprint of breast cancer[J]. Internationa Journal of Biochemistryand Cell Biology, 2010, 43(7):1010-1020. [13] Ott KH, Aranibar N. Nuclear magnetic resonance metabonomics :methods for drug discovery and development[J]. Methods MolBiol, 2007, 358 :247-271. [14] Rooney OM, Troke J, Nicholson JK, et al. High-resolution diffusionand relaxation-edited magic angle spinning 1H NMR spectroscopyof intact liver tissue[J]. Magn Reson Med, 2003, 50(5):925-930. [15] Wishanrt DS. Quantitative metabolomics using NMR[J]. Trendsand Chem, 2008, 27(3):228-237. [16] Krone N, Hughes BA, Lavery GG, et al. Gas chromatogmphy/massspectrometry(GC/MS)remains a preeminent discovery tool in clinicalsteroid investigations even in the era of fast liquid chromatographytandem mass spectrometry(LC/MS/MS)[J]. J Steroid BiochemMol Biol, 2010, 121(3-5):496-504. [17] Drexler DM, Reily MD, Shipkova PA. Advances in massspectrometryapplied to pharmaceutical metabolomics [J/OL]. Anal BioanalChem, 2010, 399(8):2645-2653. [18] Styczynski MP, Moxley JF, Tong LV, et al. Systematic identificationof conserved metabolites in GC/MS data for metabolomics andbiomarker discovery[J]. Anal Chem, 2007, 79(3):966-973. [19] Liu L, Moxley JF, Tong LV, et al. Differences in metabolite profilebetween blood plasma and serum[J]. Anal Biochem, 2010, 406(2):105-112. [20] Wei J, Xie GX, Zhou ZT, et al. Salivary metabolite signatures oforal cancer and leukoplakia[J]. Int J Cancer, 2011, 129(9):2207-2217. [21] Holmes E, Antti H. Chemometric contributions to the evoluttion ofmetabonomics mathematical solutions to characterising and interpretingcomplex biological NMR spectra[J]. Analyst, 2002, 27(12):1549-1557. [22] Keun HC, Bbels TMD, Bollard ME, et al. Geometric trajectoryanalysis of metabolic responses to toxicity can define reatmentspecific profiles[J]. Chem Res Toxicol, 2004, 17(5):579-587. [23] Wang C, Kong HW, Guan YF, et al. Plasma phospholipid metabolicprofiliing and biomarkers of type 2 diabetes mellitus based on highperformanceliquid chromatography/electrospray mass spectrometryand multivariate statistical analysis[J]. Anal Chem, 2005, 77(13):4108-4116. [24] Sun JC, Von LS, Tungeln W, et al. Identification of metaboliteprofiles of the catechol-O-methyl transferase inhibitor tolcaponein rat urine using LC-MS-based metabonomics analysis[J].Chromatorgraph B-Analyt Technol Biomed Life Sci, 2009, 877(24):2557-2565. [25] Trygg J, Holmes E, Lundstedt T. Chemometrics in metabonomics[J]. J Pmteome Res, 2007, 6(2):469-479. [26] Lindon JC, Holmes E, Nicholson JK. Toxicological applicationssofmagnetic resonace[J]. Prog NMR Spectr, 2004, 45(1-2):109-143. [27] Bundy JG, Lenz EM, Bailey NJ, et al. Metabonomic assessmentof toxicity of 4-fluoroaniline, 3, 5-difluoroaniline and 2-fluoro-4-methylaniline to the earthworm Eisenia veneta(Rosa):identification of new endogenous biomarkers[J]. EnvironmToxicol Chem, 2002, 21(9):1966-1972. [28] Nicholson JK, Timbrell JA, Higham DP, et al. Mercury and cadmiumnephrotoxic and the detection of abnomal urinary metabolites by protonNMR-spectroscopy[J]. Human Toxicol, 1984, 3(4):334-335. [29] Nicholson JK, Timbrell JA, Sadler PJ, et al. Proton NMR-spectra ofurine as indicators of renal damage-mercury-induced nephrotoxicityin RATS[J]. Mol Pharmacol, 1985, 27(6):644-651. [30] Stewart JD, Bolt HM. Metabolomics :biomarkers of diease anddrug toxicity[J]. Arch Toxicol, 2011, 85 :3-4. [31] Kleno TG, Kiehr B, Baunsgaard D, et al. Combination of “omics”data to investigate the mechanism(s)of hydrazine-induced hepatotoxicityin rats and to identify potential biomarkers[J]. Biomarkers,2004, 9(2):116-138. [32] Schnackenberg L, Beger RD, Dragan Y, et al. NMR-based metabonomicevaluation of livers from rats chronically treated with tamoxifen,mestranol and phenobarbital[J]. Metabolomics, 2005, 1(10):87-94. [33] Ma C, Bi K, Zhang M, et al. Toxicology effects of morning gloryseed in rat :a metabonomic method forprofiling of urine metabolic2013年第1期55 周秋香等:代谢组学研究进展及其应用changes[J]. Journal of Ethnopharmacology, 2010, 130(1):134-142. [34] Brindle JT, Antti H, Holmes E, et al. Rapid and noninvasive diagnosisof the presence and severity of coronary heart disease using1H-NMR-based metabonomics[J]. Nat Med, 2002, 8(12):1439-1444. [35] Wu DJ, Zhu BJ, Wang XD. Metabonomics-based omics study andatherosclerosis[J]. Journal of Clinical Bioinformatics, 2011, 1 :30. [36] Shang Q, Xiang JF, Tang YL. NMR-based metabonomics :a usefulplatform of oncology reseatch[J]. Bioanal Rev, 2010, 1 :117-140. [37] Sabatille MS, Liu E, Morrow DA, et al. Metabolomic identificationof novel biomarkers of myocardial ischemia[J]. Cireulation,2005 :112(25):3868-3875. [38] Peng JB, Jia HM, Xu T, et al. A 1H NMR based metabonomicsapproach to progression of coronary atherosclerosis in a rabbitmodel[J]. Process Biochemistry, 2011, 46(12):2240-2247. [39] Li x, Yang SB, Qiu YP, et al. Urinary metabolomics as a potentiallynovel diagnostic and stratification tool for knee osteoarthritis[J].Metabolomics, 2010, 6 :109-118. [40] Sun LY, Hu WH, Liu Q, et al. Metabonomics reveals plasma metabolicchanges and inflammatory marker in polycystic ovary syndromepatients[J]. J Proteome Res, 2012, 11(5):2937-2946. [41] Arora DK. Fungal biotechnology in agricultura1, food and environmentalapplications[M]. New York :Marcel Dekker, 2004 :19-35. [42] Bundy JG, Willey TL, Castell RS, et al. Discrimination ofpathogenic clinical isolates and laboratory strains of Bacillus cereusby NMR-based metabolomic profiling[J]. FEMS MicrobiolLetters, 2005, 242(1):127-136. [43] Buchholz A, Hurlebaus J, Wandrey C, et al. Metabolomies :quantification of intracellular metabolite dynamics[J]. BiomolEng, 2002, 19 :5-15. [44] Dalluge JJ, Smith S, Sanchez-Riera F, et al. Potential of fermentationprofiling via rapid measurement of amino acid metabolism by liquidchromatography-tandem mass spectrometry[J]. Chromatography,2004, 1043(1):3-7. [45] Raamsdonk LM, Teusink B, Broadhurst D, et al. A Functionalgenomics strategy that uses metabolome data to reveal thephenotype of silent mutations[J]. Nat Biotechnol, 2011, 19(1):45-50. [46] Sumner LW, Mendes P, Dixon RA. Plant metabolomies :largescalephytoehemistry in the functional genomics era[J]. Phytochemistry,2003, 62 :817-836. [47] Hye KK, Young HC, Robert V, et al. NMR-based metabolomicanalysis of plants[J]. Nature Protocols, 2010, 5 :536-549. [48] Humphreys JM, Chapple C. Rewriting the lignin roadmap. CurrentOpinion in Plant[J]. Biology, 2002, 5 :224-229. [49] Fraser PD, Pinto MES, Holloway DE, et al.Application of highperformanceliquid chromatography with photodiode array detectionto the metabolic profiling of plant isoprenoids[J]. Plant Journal,2000, 24(4):551-558. [50] Atsushi I, Fumio M, Hisashi M, et al. Metabolomics for metabolicallymanipulated plants :effects of tryptophan overproduction[J]. Metabolomics, 2007, 3 :319-334. |
[1] | ZHOU Lu-qi, CUI Ting-ru, HAO Nan, ZHAO Yu-wei, ZHAO Bin, LIU Ying-chao. Application of Chemical Proteomics in Identifying the Molecular Targets of Natural Products [J]. Biotechnology Bulletin, 2023, 39(9): 12-26. |
[2] | SANG Tian, WANG Peng-cheng. Research Progress in Plant SUMOylation [J]. Biotechnology Bulletin, 2023, 39(3): 1-12. |
[3] | CHEN Gui-fang, YANG Jia-yi, GAO Yun-hua, REN Ge. Research Progress in Chromatin Immunoprecipitation Followed by Sequencing [J]. Biotechnology Bulletin, 2022, 38(7): 40-50. |
[4] | ZHAO Ming-ming, TANG Yin, GUO Lei-zhou, HAN Jia-hui, GE Jia-ming, MENG Yong, PING Shu-zhen, ZHOU Zheng-fu, WANG Jin. Function Analysis of Lon1 Protease Involved in High Temperature Stress and Cell Division of Deinococcus radiodurans R1 [J]. Biotechnology Bulletin, 2022, 38(5): 149-158. |
[5] | LI Bing-juan, ZHENG Lu, SHEN Ren-fang, LAN Ping. Proteomic Analysis of RPP1A Involved in the Seedling Growth of Arabidopsis thaliana [J]. Biotechnology Bulletin, 2022, 38(2): 10-20. |
[6] | WANG Zhi-bo, WANG Dao-ping, MIAO Lan, LI Ying, PAN Ying-hong, LIU Jian-xun. Comparative Study on Methods of Analyzing Proteome in Blood Samples [J]. Biotechnology Bulletin, 2021, 37(8): 307-318. |
[7] | CHEN Qian, ZHANG Lu-yuan, CHEN Bo-chang, WU Hai-yan. Optimization of Fermentation Conditions of Myrothecium verrucaria ZW-2,a Biocontrol Strain Against Heterodera glycines and Analysis of Active Substances [J]. Biotechnology Bulletin, 2021, 37(7): 127-136. |
[8] | ZHANG Miao, SUN Xiang-rui, XU Chun-ming. Research Progress of Approaches in Single Cell RNA Sequencing Data Analysis [J]. Biotechnology Bulletin, 2021, 37(1): 52-59. |
[9] | MENG Li-ná, PENG Chun-ying, LI Tie-dong, LI Bo-sheng. Proteomic ánálysis of Spiruliná plátensis in Response to ársenic Stress [J]. Biotechnology Bulletin, 2020, 36(4): 107-116. |
[10] | LI Kun, LIU Yue, HUANG Peng, YANG Zhi-fang, HU Qian, ZHANG Ying, LI Zhi-hong, LÜ Ye-hui, LIANG Le. Proteomics Study on Spermatogonia Differentiation in Mice [J]. Biotechnology Bulletin, 2020, 36(3): 168-176. |
[11] | ZHANG Liang, CHEN Xiao-qing, SONG Jia-yu, MAO Ran-ran, JIANG Qian-wen, LIN Xiang-min. Comparative Proteomics Analysis of Escherichia coli in Response to Barofloxacin Stress [J]. Biotechnology Bulletin, 2019, 35(3): 103-109. |
[12] | LAN Yu-ting, WANG Shuang-Lei, LI Zheng-zhen, FENG Jin-chao, WANG Xiao-dong, SHI Sha. Research Advances in Proteomics of Ammopiptanthus in Responses to Abiotic Stresses [J]. Biotechnology Bulletin, 2019, 35(1): 112-119. |
[13] | MU Yong-ying,GU Pei-ming,MA Bo,YAN Wen-xiu,WANG Dao-ping,PAN Ying-hong. Advancements in Quantitative Proteomics Technologies Based on Mass Spectrometry [J]. Biotechnology Bulletin, 2017, 33(9): 73-84. |
[14] | SHAO Gui-fang, ZHANG Fan, WANG Jiao, ZHAO Kai, MO Yun-rong, DENG Ming-hua. Research Progress on Male Sterility of Pepper [J]. Biotechnology Bulletin, 2017, 33(8): 7-13. |
[15] | ZHU Bei-bei, LI Xiang-yu, CHEN Huan, WANG Hong-juan, HOU Hong-wei, HU Qing-yuan. iTRAQ-based Quantitative Proteomic Analyses of Differentially Expressed Proteins in Nicotine-induced SH-SY5Y Cells [J]. Biotechnology Bulletin, 2017, 33(4): 90-97. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||