Biotechnology Bulletin ›› 2013, Vol. 0 ›› Issue (6): 25-31.
Previous Articles Next Articles
Zhao Dongxin1 Zhao Shanshan1 Lu Kui 1, 2
Received:
2013-06-20
Revised:
2013-06-20
Online:
2013-06-20
Published:
2013-06-20
Zhao Dongxin, Zhao Shanshan, Lu Kui . Research Progress of Structure and Function of Oligopeptide Transporter PepT2[J]. Biotechnology Bulletin, 2013, 0(6): 25-31.
[1] Daniel H, Kottra G. The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology[J]. Pflugers Arch, 2004, 447(5):610-618. [2] Romano A, Barca A, Kottra G, Daniel H. Functional expression of SLC15 Peptide transporters in rat thyroid follicular cells[J]. Mol Cell Endocrinol, 2010, 315(1):174-181. [3] Newstead S. Towards a structural understanding of alternating access within the proton dependent oligopeptide transporter(POT)family[J]. Biophysical Journal, 2012, 102(3):605a. [4] Rubio-Aliaga I, Boll M, Daniel H. Cloning and characterization of the gene encoding the mouse peptide transporter PEPT2[J]. Biochem Biophys Res Commun, 2000, 276(2):734-741. [5] Terada T, Irie M, Okuda M, Inui K. Genetic variant Arg57His in human H+/peptide cotransporter2 causes a complete loss of transport function[J]. Biochem Biophys Res Commun, 2004, 316(2):416-420. [6] Pedretti A, De Luca L, Marconi C, et al. Fragmental modeling of hPepT2 and analysis of its binding features by docking studies and pharmacophore mapping[J]. Bioorg Med Chem, 2011, 19(15):4544-4551. [7] Ocheltree SM, Shen H, Hu YJ, Keep RF. Role and relevance of peptide transporter2(PEPT2)in the kidney and choroid plexus:in vivo studies with glycylsarcoine in wild-type and PEPT2 knockout mice[J]. J Pharmacol Exp Ther, 2005, 315(1):240-247. [8] Biegel A, Knutter I, Hartrodt B, et al. The renal type H+/peptide symporter PEPT2:Structure-affinity relationships[J]. Amino Acids, 2006, 31(2):137-156. [9] Inui K, Saito H, Terada T, et al. Molecular cloning and tissue distribution of rat peptide transporter PEPT2[J]. Biochim Biophys Acta, 1996, 1280:173-177. [10] Wang MH, Zhang XZ, Wang QS. Comparative analysis of vertebrate PEPT1 and PEPT2 genes[J]. Genetica, 2010, 138(6):587-599. [11] 陈西敬, 王广基. 药物转运蛋白在药物吸收、分布和排泄中的作用及对新药研发的意义[J]. 中国药科大学学报, 2003, 34(6):483-486. [12] Ostaszewska T, Dabrowski K, Kamaszewski M, et al. The effect of plant protein-based diet supplemented with dipeptide or free amino acids on digestive tract morphology and PepT1 and PepT2 expressions in common carp(Cyprinus carpio L.)[J]. Comp Biochem Physiol A Mol Integr Physiol, 2010, 157(3):158-169. [13] Groneberg DA, Doring F, Theis S, et al. Peptide transport in the mammary gland:expression and distribution of PEPT2 mRNA and protein[J]. Am J Physiol Endocrinol Metab, 2002, 282(5):E1172-E1176. [14] Frey IM, Rubio-Aliaga I, Klempt M, et al. Phenotype analysis of mice deficient in the peptide transporter PEPT2 in response to alterations in dietary protein intake[J]. Pflugers Arch, 2006, 452:300-306. [15] Sala-Rabanal M, Loo DD, Hirayama BA, Wright EM. Molecular mechanism of dipeptide and drug transport by the human renal H+/oligopeptide cotransporter hPEPT2[J]. Am J Physiol Renal Physiol, 2008, 294(6):F1442-F1432. [16] 于辉, 李华, 关绣霞. 小肽转运载体的分子营养学的研究进展[J].佛山科学技术学院学报:自然科学版, 2005, 23(3):77-80. [17] Daniel H. Function and molecular structure of brush border membrane peptide/H+ symporters[J]. J. Membrane Biol, 1996, 154(3):197-203. [18] Pinsonneault J, Nielsen UC. Genetic variants of the human H+/dipe-ptide transporter PEPT2:analysis of haplotype functions[J]. Pharmacology and Experimental Therapeutics, 2004, 311(3):1088-1096. [19] Inui K, Terada T, Saito H. N-terminal halves of rat H+/peptide transporters are responsible for their substrate recognition[J]. Pharm Res, 2000, 1(17):15-20. [20] Rubio-Aliaga I, Daniel H. Mammalian peptide transporters as targets for drug delivery[J]. Trends Pharmacol Sci, 2002, 9(23):434-440. [21] Doring F, Martini C, Walter J, et al. Importance of a small N-terminal region in mammalian peptide transporters for substrate affinity and function[J]. J Membr Boil, 2002, 186(2):55-62. [22] Meredith D, Boyd CA. Structure and function of eukaryotic peptide transporters[J]. Cell Mol Life Sci, 2000, 57(5):754-778. [23] 苍健, 刘克辛. 寡肽转运体PEPT2在药物肾脏转运中的作用和活性调节[J]. 药物与临床, 2010, 7(18):49-52. [24] Guo XJ, Meng Q, Liu Q, et al. Construction, identification and application of HeLa cells stably transfected with human PEPT1 and PEPT2[J]. Peptides, 2012, 34(16):395-403. [25] Daniel H, Spanier B, Weitz D. From bacteria to man:archaic proton dependent peptide transporters at work[J]. Physiology, 2006, 21(2):93-102. [26] Bahadduri PM, Pinsonneault JK, Bao SY, Knoell DL. Functional characterization of the peptide transporter PEPT2 in primary cultures of human upper airway epithelium[J]. Am J Respir Cell Mol Biol, 2005, 32(4):319-325. [27] Liu R, Tang AM, Tan YL, et al. Interethnic differences of PEPT2(SLC15A2)polymorphism distribution and associations with cephalexin pharmacokinetics in healthy Asian subjects[J]. Eur J Clin Pharmacol, 2009, 65(1):65-70. [28] Brandsch M, Brandsch C, Ganapathy ME, et al. Influence of proton and essential histidyl residues on the transport kinetics of the H+/peptide cotransport systems in intestine(PEPT1)and kidney(PEPT2)[J]. Biophysica Acta, 1997, 1324(2):251-262. [29] Daniel H, Adibi SA. Transport of beta-lactam antibiotics in kidney brush border membrane. Determinants of their affinity for the oligopeptide/H+ symporter[J]. J Clin Invest, 1993, 92:2215-2223. [30] Ganapathy ME, Brandsch M, Prasad PD, et al. Differential recogn-ition of β-lactam antibiotics by intestinal and renal peptide trans-porters, PEPT 1 and PEPT 2[J]. J Biol Chem, 1995, 270(43):25672-25677. [31] Luckner P, Brandsch M. Interaction of 31 β-lactam antibiotics with the H+/peptide symporter PEPT2:analysis of affinity constants and comparison with PEPT1[J]. Eur J Pharm Biopharm, 2005, 59(1):17-24. [32] Terada T, Saito H, Inui K. Interaction of β-lactam antibiotics with histidine residue of rat H+/peptide cotransporters, PEPT1 and PEPT2[J]. J Biol Chem, 1988, 10(273):5582-5585. [33] Keep RF, Smith DE. Chapter 231-Oligopeptide and Peptide-Like Drug Transport[M]//Kastin A. Handbook of Biologically Active Peptides. Academic Bess is an imprint of Elsevier, 2013, 2:1688-1695. [34] Xiang JM, Chiang PP, Hu YJ, et al. Role of PEPT2 in glycylsarcosine transport in astrocyte and glioma cultures[J]. Neurosci Lett, 2006, 396(3):225-229. [35] Biegel A, Gebauer S, Knutter I. Recognition of 2-aminothiazole-4-acetic acid derivatives by the peptide transporters PEPT1 and PEPT2[J]. Eur J Pharm Sci, 2007, 32(1):69-76. [36] Zimmermann M, Kappert K, Stan AC. U373-MG cells express PepT2 and accumulate the fluorescently tagged dipeptide-derivative β-Ala-Lys-N-AMCA[J]. Neurosci Lett, 2010, 486(3):174-178. [37] Kouodom MN, Boscutti G, Celegato M, et al. Rational design of gold(III)-dithiocarbamato peptidomimetics for the targeted anticancer chemotherapy[J]. J Inorg Biochem, 2012, 117:248-260. [38] Knütter I, Hartrodt B, Tóth G, et al. Synthesis and characterization of a new and radiolabeled high-affinity substrate for H+/peptide cotransporters[J]. FEBS J, 2007, 274(22):5905-5914. [39] Steffansen B, Nielsen CU, Frokjaer S. Delivery aspects of small peptides and substrates for peptide transporters[J]. Eur J Pharm Biopharm, 2005, 60(2):241-245. [40] Daniel H, Rubio-Aliaga I. An update on renal peptide transporters[J]. Am J Physiol Renal Physiol, 2003, 284:F885-F892. [41] 周苗苗, 吴跃明, 刘建新. 小肽转运载体2在奶牛乳腺小肽摄取中的作用研究[J]. 动物营养学报, 2011, 23(8):1303-1308. [42] Jappar D, Hu YJ, Smith DE. Transport mechanisms of carnosine in SKPT cells:contribution of apical and basolateral membrane transporters[J]. Pharmaceutical Research, 2009, 26(1):172-181. [43] Shu C, Shen H, Teuscher NS, et al. Role of PEPT2 in peptide/mimetic trafficking at the blood-cerebrospinal fluid barrier:studies in rat choroid plexus epithelial cells in primary culture[J]. Pharmacol Exp Ther, 2002, 301(3):820-829. [44] Teuscher NS, Keep RF, Smith DE. PEPT2-mediated uptake of neuropeptides in rat choroid plexus[J]. Pharmaceutical Research, 2001, 6(18):807-813. [45] Hu YJ, Ocheltree SM, Smith DE, et al. Glycyl-L-glutamine disposition in rat choroid plexus epithelial cells in primary culture:role of PEPT2[J]. Pharma Res, 2005, 22(8):1281-1286. [46] Dringen R, Hamprecht B, Broer S. The peptide transporter PepT2 mediates the uptake of the glutathioneprecursor CysGly in astroglia-rich primary cultures[J]. J Neu-rochem, 1998, 71:388-393. [47] Hussain I, Zanic-Grubisic T, Kudo Y. Functional and molecular cha-racterization of a peptide trans-porter in the rat PC12 neuroendoc-rine cell line[J]. FEBS Lett, 2001, 508:350-354. [48] 张旋. PepT2 mRNA 在内毒素致急性肺损伤大鼠肺组织表达研究.[D]. 昆明:昆明医学院, 2006. [49] 李莉, 宋鑫, 王殿华. 肽转运载体与药物转运[J]. 中国临床药学杂志, 2008, 17(1):61-64. [50] 范淳, 陈代文, 余冰. 小肽转运载体(PEPT1和PEPT2)研究进展[J]. 饲料工业, 2007, 28(1):11-15. [51] 赵东欣, 薛永亮, 卢奎.寡肽转运蛋白PepT2 及其药物转运[J]. 中国生物化学与分子生物学报, 2010, 26(1):1-8. [52] Groneberg DA, Springer J, Doring F, et al. Localization of the peptide transporter PEPT2 in the lung:implications for pulmonary oligopeptide uptake[J]. Am J Pathol, 2001, 158(2):707-714. [53] Wang ZY, Pal D, Patel A, et al. Influence of overexpression of efflux proteins on the function and gene expression of endogenous peptide transporters in MDR-transfected MDCKII cell lines[J]. Int J Pharm, 2013, 44(1-2):40-49. [54] 黎航航. 草鱼PepTl与PepT2基因全长cDNA克隆和PepT2组织表达研究[D]. 长沙:湖南农业大学, 2012. [55] 杨建香, 金晓露, 魏宁波, 刘红云. 小肽转运载体2的转运机制及功能研究[J]. 动物营养学报, 2013, 13(6):1-5 |
[1] | SONG Zhi-zhong, XU Wei-hua, XIAO Hui-lin, TANG Mei-ling, CHEN Jing-hui, GUAN Xue-qiang, LIU Wan-hao. Cloning, Expression and Function of Iron Regulated Transporter VvIRT1 in Wine Grape(Vitis vinifera L.) [J]. Biotechnology Bulletin, 2023, 39(8): 234-240. |
[2] | ZHANG Man, ZHANG Ye-zhuo, HE Qi-zou-hong, E Yi-lan, LI Ye. Advances in Plant Cell Wall Structure and Imaging Technology [J]. Biotechnology Bulletin, 2023, 39(7): 113-122. |
[3] | XIE Dong, WANG Liu-wei, LI Ning-jian, LI Ze-lin, XU Zi-hang, ZHANG Qing-hua. Exploration, Identification and Phosphorus-solubilizing Condition Optimization of a Multifunctional Strain [J]. Biotechnology Bulletin, 2023, 39(7): 241-253. |
[4] | WU Hao, LIU Zi-wei, ZHENG Ying, DAI Ya-wen, SHI Quan. Study on the Heterogeneity of Human Gingival Mesenchymal Stem Cells at Single Cell Level [J]. Biotechnology Bulletin, 2023, 39(7): 325-332. |
[5] | YOU Zi-juan, CHEN Han-lin, DENG Fu-cai. Research Progress in the Extraction and Functional Activities of Bioactive Peptides from Fish Skin [J]. Biotechnology Bulletin, 2023, 39(7): 91-104. |
[6] | MA Xue-hu, MA Li-hua, GOU Yan, MA Yan-fen. Related Inflammatory Diseases Caused by Mitochondrial Dysfunction and Targeted Therapy to Them [J]. Biotechnology Bulletin, 2023, 39(6): 119-125. |
[7] | CUI Xue-qiang, HUANG Chang-yan, DENG Jie-ling, LI Xian-min, LI Xiu-ling, ZHANG Zi-bin. SNP Markers Development and Genetic Relationship Analysis of Dendrobium Germplasms Using SLAF-seq Technology [J]. Biotechnology Bulletin, 2023, 39(6): 141-148. |
[8] | XIAO Liang, WU Zheng-dan, LU Liu-ying, SHI Ping-li, SHANG Xiao-hong, CAO Sheng, ZENG Wen-dan, YAN Hua-bing. Research Progress of Important Traits Genes in Cassava [J]. Biotechnology Bulletin, 2023, 39(6): 31-48. |
[9] | LI Tuo, LI Long-ping, QU Lei. Research Progress in the Structure of Tailed Bacteriophage and Its Receptors [J]. Biotechnology Bulletin, 2023, 39(6): 88-101. |
[10] | LIU Hui, LU Yang, YE Xi-miao, ZHOU Shuai, LI Jun, TANG Jian-bo, CHEN En-fa. Comparative Transcriptome Analysis of Cadmium Stress Response Induced by Exogenous Sulfur in Tartary Buckwheat [J]. Biotechnology Bulletin, 2023, 39(5): 177-191. |
[11] | ZHANG Xue-ping, LU Yu-qing, ZHANG Yue-qian, LI Xiao-juan. Advances in Plant Extracellular Vesicles and Analysis Techniques [J]. Biotechnology Bulletin, 2023, 39(5): 32-43. |
[12] | XIONG Shu-qi. Towards the Understanding on the Physiological Functions of Bile Acids and Interactions with Gut Microbiota [J]. Biotechnology Bulletin, 2023, 39(4): 187-200. |
[13] | HU Ming-yue, YANG Yu, GUO Yang-dong, ZHANG Xi-chun. Functional Analysis of SlMYB96 Gene in Tomato Under Cold Stress [J]. Biotechnology Bulletin, 2023, 39(4): 236-245. |
[14] | YANG Jun-zhao, ZHANG Xin-rui, ZHAO Guo-zhu, ZHENG Fei. Structure and Function Analysis of Novel GH5 Multi-domain Cellulase [J]. Biotechnology Bulletin, 2023, 39(4): 71-80. |
[15] | LI Tian-shun, LI Chen-wei, WANG Jia, ZHU Long-Jiao, XU Wen-tao. Efficient Generation of Secondary Libraries During Functional Nucleic Acids Screening [J]. Biotechnology Bulletin, 2023, 39(3): 116-122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||