Biotechnology Bulletin ›› 2014, Vol. 0 ›› Issue (1): 46-52.
• Papers • Previous Articles Next Articles
Yang Bingzhen, Zhang Min, Wang Kejian
Received:
2013-09-04
Online:
2014-01-23
Published:
2014-01-23
Yang Bingzhen, Zhang Min, Wang Kejian. Role of NF-κB Signal Pathway in the Innate Immune System of Fish[J]. Biotechnology Bulletin, 2014, 0(1): 46-52.
[1] Hayden MS, West AP, Ghosh S. NF-κB and the immune response [J]. Oncogene, 2006, 25(51): 6758-6780. [2] Gonzalez-Crespo S, Levine M. Related target enhancers for dorsal and NF-kappa B signaling pathways[J] (5156). Science, 1994, 264: 255-258. [3] Ghosh S, Hayden MS. New regulators of NF-κB in inflammation[J].Nature Reviews Immunology, 2008, 8(11): 837-848. [4] Suzuki K, Yamamoto T, Inoue JI. Molecular cloning of cDNA encoding the Xenopus homolog of mammalian RelB[J]. Nucleic Acids Research, 1995, 23(22): 4664-4669. [5] Kao KR, Hopwood ND. Expression of a mRNA related to c-rel and dorsal in early Xenopus laevis embryos[J]. Proceedings of the National Academy of Sciences, 1991, 88(7): 2697-2701. [6] Suzuki K, Tsuchida J, Yamamoto T, et al. Identification and expression of the Xenopus homolog of mammalian p100-NF- κB2[J]. Gene, 1998, 206(1): 1-9. [7] Tannahill D, Wardle FC. Control of axis formation in Xenopus by the NF-kappa B/I kappa B system[J]. The International Journal of Developmental Biology, 1995, 39(4): 549. [8] Naugler WE, Karin M. NF-κB and cancer-identifying targets and mechanisms[J]. Current Opinion in Genetics & Development,2008, 18(1): 19-26. [9] Rutschmann S, Jung AC, Hetru C, et al. The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila[J]. Immunity, 2000, 12(5): 569-580. [10] Correa RG, Tergaonkar V, Ng JK, et al. Characterization of NFkappa B/I kappa B proteins in zebrafish and their involvement in notochord development[J]. Molecular and Cellular Biology,2004, 24(12): 5257-5268. [11] Huxford T, Ghosh G. A structural guide to proteins of the NF- κB signaling module[J]. Cold Spring Harbor Perspectives in Biology, 2009, 1(3): a000075. [12] Huxford T, Huang DB, Malek S, et al. The crystal structure of the I kappa B alpha / NF-kappa B complex reveals mechanisms of NFkappaB inactivation[J]. Cell, 1998, 95: 759-770. [13] Caamano J, Hunter CA. NF-κB family of transcription factors: central regulators of innate and adaptive immune functions[J].Clinical Microbiology Reviews, 2002, 15(3): 414-429. [14] Grilli M, Chiu JJS, Lenardo M. NF-κB and Rel: participants in a multiform transcriptional regulatory system[J]. International Review of Cytology, 1993, 143: 1-62. [15] Elizabeth B. NF-κB and Rel proteins in innate immunity[J].Advances in Immunology, 1995, 58: 1. [16] Hatada EN, Krappmann D, Scheidereit C. NF-κB and the innate immune response[J]. Current Opinion in Immunology, 2000,12: 52-58. [17] Wang T, Zou J, Cunningham C, et al. Cloning and functional characterisation of the interleukin-1β1 promoter of rainbow trout (Oncorhynchus mykiss)[J]. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 2002, 1575(1): 108- 116. [18] Nascimento DS, Vale A, Tomás AM, et al. Cloning, promoter analysis and expression in response to bacterial exposure of sea bass(Dicentrarchus labrax L.)interleukin-12 p40 and p35 subunits[J]. Molecular Immunology, 2007, 44(9): 2277- 2291. [19] Lin B, Chen S, Cao Z, et al. Acute phase response in zebrafish upon Aeromonas salmonicida and Staphylococcus aureus infection: Striking similarities and obvious differences with mammals[J].Molecular Immunology, 2007, 44(4): 295-301. [20] Collet B, Boudinot P, Benmansour A, et al. An Mx1 promoter? reporter system to study interferon pathways in rainbow trout[J].Developmental & Comparative Immunology, 2004, 28(7): 793- 801. [21] Chen YM, Su YL, Lin JHY, et al. Cloning of an orange-spotted grouper(Epinephelus coioides)Mx cDNA and characterisation of its expression in response to nodavirus[J]. Fish & Shellfish Immunology, 2006, 20(1): 58-71. [22] Moon JY, Nam BH, Kong HJ, et al. Maximal transcriptional activation of piscine soluble Toll-like receptor 5 by the NF-κB subunit p65 and flagellin[J]. Fish & Shellfish Immunology,2011, 31(6): 881-886. [23] Su J, Jang S, Yang C, et al. Genomic organization and expression analysis of Toll-like receptor 3 in grass carp(Ctenopharyngodon idella)[J]. Fish & Shellfish Immunology, 2009, 27(3): 433- 439. [24] Dann SG, Ted Allison W, Veldhoen K, et al. Chromatin immunoprecipitation assay on the rainbow trout opsin proximal promoters illustrates binding of NF-κB and c-jun to the SWS1 promoter in the retina. Experimental eye research, 2004, 78: [J] (5) 1015-1024. [25] Ghosh S, May MJ, Kopp EB. NF-kappaB and Rel proteins: evolutionarily conserved mediators of immune responses[J].Science Signaling, 1998, 16(1): 225. [26] Kong HJ, Moon JH, Moon JY, et al. Cloning and functional characterization of the p65 subunit of NF-κB from olive flounder (Paralichthys olivaceus)[J]. Fish and Shellfish Immunology,2011, 30: 406-411. [27] Yazawa R, Kondo H, Hirono I, et al. Cloning and characterization of the IκBα gene from Japanese flounder, Paralichthys olivaceu[J] s. Fish and Shellfish Immunology, 2007, 23: 808 -814. [28] Wang L, Zhou ZH, Guo CJ, et al. The alpha inhibitor of NF-κB (IκBα)from the mandarin fish binds with p65 NF-κB. Fish and Shellfish Immunology, 2009, 26: 473-482. [29] Sangrador-Vegas A, Smith TJ, Cairns, MT. Cloning and characterization of a homologue of the alpha inhibitor of NF-kappaB in Rainbow trout(Oncorhynchus mykiss)[J]. Veterinary Immunology and Immunopathology, 2005, 13: (1-2): 1-7. [30] Yamamoto M, Takeda K. Role of nuclear IκB proteins in the regulation of host immune responses[J]. Journal of Infection and Chemotherapy, 2008, 14(4): 265-269. [31] Zhang M, Xiao Z, Sun L. Overexpression of NF-κB inhibitor alpha in Cynoglossus semilaevis impairs pathogen-induced immune response[J]. Developmental & Comparative Immunology, 2012,36(1): 253-257. [32] Roach JC, Glusman G, Rowen L, et al. The evolution of vertebrate Toll-like receptors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(27): 9577- 9582. [33] Jault C, Pichon L, Chluba J. Toll-like receptor gene family and TIR-domain adapters in Danio rerio[J]. Molecular Immunology,2004, 40(11): 759-771. [34] Tsujita T, Ishii A, Tsukada H, et al. Fish soluble Toll-like receptor (TLR)5 amplifies human TLR5 response via physical binding to flagellin[J]. Vaccine, 2006, 24(12): 2193-2199. [35] Bilodeau AL, Peterson BC, Bosworth BG. Response of toll-like receptors, lysozyme, and IGF-I in back-cross hybrid(F1 male (blue× hannel)× emale channel)catfish challenged with virulent Edwardsiella ictaluri[J]. Fish & Shellfish Immunology,2006, 20(1): 29-39. [36] Peterson BC, Bosworth BG, Bilodeau AL. Differential gene expression of IGF-I, IGF-II, and toll-like receptors 3 and 5 during embryogenesis in hybrid(channel× lue)and channel catfish[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2005, 141(1): 42-47. [37] Doyle SE, Oconnell R, Vaidayasa SA, et al.Toll-like receptor 3 mediates a more potent antiviral resonse than toll-like receptor 4 [J]. Journal of Immunology, 2003, 170(7): 3565-3571. [38] Kawai T, Akira S. TLR signaling[J]. Cell Death & Differentiation,2006, 13(5): 816-825. [39] Jault C, Pichon L, Chluba J. Toll-like receptor gene family, TIRdomain adapters in Danio rerio[J]. Molecular Immunology,2004, 40: 759-771. [40] Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors[J]. Nature Immunology, 2010, 11(5): 373-384. [41] O’Neill LAJ, Bowie AG. The family of five: TIR-domaincontaining adaptors in Toll-like receptor signalling[J]. Nature Reviews Immunology, 2007, 7(5): 353-364. [42] Dong C, Davis RJ, Flavell RA. MAP kinases in the immune response[J]. Annual Review of Immunology, 2002, 20: 55-72. [43] Takano T, Kondo H, Hirono I, et al. Identification and characterization of a myeloid differentiation factor 88(MyD88) cDNA and gene in Japanese flounder, Paralichthys olivaceus[J].Developmental and Comparative Immunology, 2006, 30: 807-816. [44] Skjaeveland I, lliev DB, Strandskog G, et al. Identification and characterization of TLR8 and MyD88 homologs in Atlantic salmon (Salmon salar)[J]. Development and Comparative Immunology,2009, 33: 1011-1017. [45] Oshiumi H, Matsuo A, Matsumoto M, et al. Pan-vertebrate toll-like receptors during evolution[J]. Current Genomics, 2008, 9: 488493. [46] Fan S, Chen S, Liu Y, et al. Zebrafish TRIF, a Golgi-localized protein,participates in IFN induction and NF-kappaB activation[J].Journal of Immunology, 2008, 180: 5373-5383. [47] Matsuo A, Oshiumi H, Tsujita T, et al. Teleost TLR22 recognizes RNA duplex to induce IFN and protect cells from birnaviruses[J].Journal of Immunology, 2008, 181(5): 3474-3485. [48] 丁旭. 斜带石斑鱼Toll 样受体22 基因的cDNA 克隆, 模式分 析及其信号通路的初步探讨[D]. 海口: 海南大学, 2012. [49] Engeszer RE, Barbiano D, Alberici L, et al. Timing and plasticity of shoaling behavior in the zebrafish, Danio rerio[J]. Animal Behavior, 2007, 74(5): 1269-1275. [50] Kagan JC, Medzhitov R. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling[J]. Cell, 2006,125(5): 943-955. [51] Kagan JC, Su T, Horng T, et al. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-β[J]. Nature Immunology, 2008, 9(4): 361-368. [52] Saeij JPJ, Vries BJ, Wiegertjes GF. The immune response of carp to Trypanoplasma borreli: kinetics of immune gene expression and polyclonal lymphocyte activation[J]. Developmental & Comparative Immunology, 2003, 27(10): 859-874. [53] Pan CY, Huang TC, Wang YD, et al. Oral administration of recombinant epinecidin-1 protected grouper(Epinephelus coioides) and zebrafish(Danio rerio)from Vibrio vulnificus infection and enhanced immune-related gene expressions[J]. Fish & Shellfish Immunology, 2012, 32(6): 947-957. [54] Levraud JP, Boudinot P, Colin I, et al. Identification of the zebrafish IFN receptor: implications for the origin of the vertebrate IFN system[J]. Journal of Immunology, 2007, 178(7): 4385-4394. [55] Wang WL, Liu W, Gong HY, et al. Activation of cytokine expression occurs through the TNFα/NF-κB-mediated pathway in birnavirusinfected cells[J]. Fish & Shellfish Immunology, 2011, 31: 1021. [56] del Castillo CS, Hikima J, Ohtani M, et al. Characterization and functional analysis of two PKR genes in fugu(Takifugu rubripes)[J]. Fish & Shellfish Immunology, 2012, 32: 79-88. [57] Bergan V, Steinsvik S, Xu H, et al. Promoters of type I interferon genes from Atlantic salmon contain two main regulatory regions [J]. FEBS Journal, 2006, 273(17): 3893-3906. [58] Robertsen B. Expression of interferon and interferon-induced genes in salmonids in response to virus infection, interferon-inducing compounds and vaccination[J]. Fish & Shellfish Immunology,2008, 25(4): 351-357. [59] Hong JR, Guan BJ, Her GM, et al. Aquatic birnavirus infection activates the transcription factor NF-kappaB via tyrosine kinase signalling leading to cell death[J]. Journal of Fish Diseases,2008, 31: 451-460. 通讯作者: 王克坚, 男, 博士, 教授, 研究方向: 海洋分子生物学与免疫毒理学;E-mail: wkjian@xmu.edu.cn |
[1] | YOU Zi-juan, CHEN Han-lin, DENG Fu-cai. Research Progress in the Extraction and Functional Activities of Bioactive Peptides from Fish Skin [J]. Biotechnology Bulletin, 2023, 39(7): 91-104. |
[2] | LI Xin-yi, JIANG Chun-xiu, XUE Li, JIANG Hong-tao, YAO Wei, DENG Zu-hu, ZHANG Mu-qing, YU Fan. Enhancing Hybridization Signal of Sugarcane Chromosome Oligonucleotide Probe via Multiple Fluorescence Labeled Primers [J]. Biotechnology Bulletin, 2023, 39(5): 103-111. |
[3] | XU Kun, YANG Ai-jiang, HU Xia, ZOU Hai-tao, LI Bin, LIU Ji. Antimony Accumulation and Its Effect on Antioxidation System in Different Tissues of Danio rerio [J]. Biotechnology Bulletin, 2021, 37(4): 145-154. |
[4] | FENG Guang-zhi, SHI Hui, LIU Bo, WU Yu-ting, WANG Yue-lin, SHI Yu. Screening and Identification of Cellulase-producing Strains Isolated from Crayfish Intestine [J]. Biotechnology Bulletin, 2020, 36(2): 65-70. |
[5] | YUE Xin, YANG Ai-jiang, XU Peng, HU Xia, ZHU Huan-yi, BAO Xin. Effect of Antimony on the Enzyme Activity of Danio rerio [J]. Biotechnology Bulletin, 2019, 35(6): 99-106. |
[6] | LIU Li-li, ZHU Hua, YAN Yan-chun, WANG Xiao-wen, ZHANG Rong, ZHU Jian-ya. Research Progress of Cold Tolerance Mechanism and Functional Genes in Fish [J]. Biotechnology Bulletin, 2018, 34(8): 50-57. |
[7] | XIA Hong-li, CHENG Jun, YU Da-peng, CHEN Wen-jie, LU Yi-shan. Research Progress on Peptidoglycan Recognition Proteins in Fish [J]. Biotechnology Bulletin, 2018, 34(8): 58-66. |
[8] | ZHAO Yan, CAO Xiao-ying, ZHOU Hao-tian, SONG Ling-yuan, TU Han-qing, HUANG Si-ying, ZHAO Jin-liang. Analysis of miRNA Transcriptome in Early Developmental Stage and Identification of Growth-related miRNA of Siniperca chuatsi [J]. Biotechnology Bulletin, 2018, 34(8): 181-189. |
[9] | HAO Ya-bin ZHANG Ai-ju LIU Jin-dian GU Zhi-min. Application of Environmental DNA Technology in the Study of Fish Resources [J]. Biotechnology Bulletin, 2018, 34(12): 56-62. |
[10] | XIAO He, ZHANG Yan, WANG Yong-rui, NI Yong-qing. Antibiotic Resistance and Resistance Mechanism in Enterococcus faecium from Cold-water Fish in Aletai Prefecture of Xinjiang [J]. Biotechnology Bulletin, 2018, 34(10): 143-149. |
[11] | LÜ Peng, XU Jia-qing, WANG Sen, YAN Yan-chun. Studies on Acute Toxicity and Oxidative Stress of Benzisothiazolin to Danio rerio Embryos [J]. Biotechnology Bulletin, 2018, 34(1): 172-182. |
[12] | XU Gang-chun,DU Fu-kuan,BIAN Chao,SHI Qiong,XU Pao,. Research Progress on Fish Genomics [J]. Biotechnology Bulletin, 2017, 33(9): 23-31. |
[13] | FENG Ya-dong, TAO Yan, LI Wen, CUI Xu, WANG Qiang-hou. Expression of Channel Catfish C-type Lysozyme in Pichia pastoris and Its Bacteriostatic Activity [J]. Biotechnology Bulletin, 2017, 33(7): 195-202. |
[14] | WU Yu-qiong, CHEN Ying, HU Yong-le, ZUO Zheng-hong, WANG Chong-gang. Toxic Effects of Four Currently-used Pesticides on Zebrafish Embryonic Development [J]. Biotechnology Bulletin, 2017, 33(6): 155-161. |
[15] | LIU Shuai-jun SHEN Dan ZHONG Ji-han CHEN Wei WANG Wei ZHANG Li CHEN Cai, YANG Kun-lun GAO Bo SONG Cheng-yi. The Annotation of Enhancer-trapping Mediated by the SB Transposon in Zebrafish [J]. Biotechnology Bulletin, 2017, 33(5): 153-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||