Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (4): 145-154.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1060
Previous Articles Next Articles
XU Kun1(), YANG Ai-jiang1,2,3(), HU Xia1,2,3, ZOU Hai-tao1, LI Bin1, LIU Ji1
Received:
2020-08-21
Online:
2021-04-26
Published:
2021-05-13
Contact:
YANG Ai-jiang
E-mail:764304931@qq.com;yangaij8818@sina.com
XU Kun, YANG Ai-jiang, HU Xia, ZOU Hai-tao, LI Bin, LIU Ji. Antimony Accumulation and Its Effect on Antioxidation System in Different Tissues of Danio rerio[J]. Biotechnology Bulletin, 2021, 37(4): 145-154.
Fig.1 Total antimony content in liver, brain, gill and muscle of zebrafish under different concentrations of antimony treatment The concentration in the control group was ND (not detected), and different letters indicate significant differences between the groups (P<0.05),the same below(n=3)
[1] |
Von Uexkull O, Skerfving S, Doyle R, et al. Antimony in brake pads - a carcinogenic component?[J]. Journal of Cleaner Production, 2005,13(1):19-31.
doi: 10.1016/j.jclepro.2003.10.008 URL |
[2] |
Babula P, Adam V, Opatrilova R, et al. Uncommon heavy metals, metalloids and their plant toxicity:A review[J]. Environmental Chemistry Letters, 2008,6(4):189-213.
doi: 10.1007/s10311-008-0159-9 URL |
[3] |
Smichowski P. Antimony in the environment as a global pollutant:A review on analytical methodologies for its determination in atmospheric aerosols[J]. Talanta, 2008,75(1):2-14.
doi: 10.1016/j.talanta.2007.11.005 pmid: 18371839 |
[4] | Sundar S, Chakravarty J. Antimony toxicity[J]. International Journal of Environmental Research & Public Health, 2010,7(12):4267-4277. |
[5] | 丁建华, 杨毅恒, 邓凡. 中国锑矿资源潜力及成矿预测[J]. 中国地质, 2013,40(3):846-858. |
Ding JH, Yang YH, Deng F, et al. Resource potential and metallogenic prognosis of antimony deposits in China[J]. Geology in China, 2013,40(3):846-858. | |
[6] | He M, Wang X, Wu F, et al. Antimony pollution in China[J] Science of the Total Environment, 2012(421-422):41-50. |
[7] | 朱静, 吴丰昌, 邓秋静, 等. 湖南锡矿山周边水体的环境特征[J]. 环境科学学报, 2009,29(3):655-661. |
Zhu J, Wu FC, Deng QJ, et al. Environmental characteristics of water near the Xikuangshan antimony mine, HunanProvince[J]. Acta Scientiae Circumstantiae, 2009,29(3):655-661. | |
[8] |
Hiller E, Lalinska B, Chovan M, et al. Arsenic and antimony contamination of waters, stream sediments and soils in the vicinity of abandoned antimony mines in the Western Carpathians, Slovakia[J]. Applied Geochemistry, 2012,27(3):598-614.
doi: 10.1016/j.apgeochem.2011.12.005 URL |
[9] | Javed M, Usmani N. Accumulation of heavy metals in fishes:A human health concern[J]. International Journal on Environmental Sciences, 2011,2(2):659-670. |
[10] | Kalay M, Canli M. Elimination of essential(Cu, Zn)and non-essential(Cd, Pb)metals from tissues of a freshwater fish Tilapia zilli[J]. Turkish Journal of Zoology, 2000,24(4):429-436. |
[11] |
Livingstone DR. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms[J]. Marine Pollution Bulletin, 2001,42(8):656-666.
doi: 10.1016/S0025-326X(01)00060-1 URL |
[12] | Cao L, Huang W, Liu J, et al. Accumulation and oxidative stress biomarkers in Japanese flounder larvae and juveniles under chronic cadmium exposure[J]. Comparative Biochemistry & Physiology Part C Toxicology & Pharmacology, 2010,151(3):386-392. |
[13] | 岳鑫, 杨爱江, 徐鹏, 等. 锑胁迫对斑马鱼酶活性的影响研究[J]. 生物技术通报, 2019,35(6):107-113. |
Yue X, Yang A, Xu P, et al. Effect of antimony on the enzyme activity of Danio rerio[J]. Biotechnology Bulletin, 2019,35(6):107-113. | |
[14] |
Pretto A, Loro VL, Silva VM, et al. Exposure to sublethal concentr-ations of copper changes biochemistry parameters in silver catfish, Rhamdia quelen, Quoy & Gaimard[J]. Bulletin of Environmental Contamination and Toxicology, 2014,92(4):399-403.
doi: 10.1007/s00128-014-1215-8 URL |
[15] |
Huang W, Cao L, Liu J, et al. Short-term mercury exposure affecting the development and antioxidant biomarkers of Japanese flounder embryos and larvae[J]. Ecotoxicology and Environmental Safety, 2010,73(8):1875-1883.
doi: 10.1016/j.ecoenv.2010.08.012 pmid: 20833429 |
[16] | Geng F, Hu N, Zheng JF, et al. Evaluation of the toxic effect on zebrafish(Danio rerio)exposed to uranium mill tailings leaching solution[J]. Journal of Radioanalytical & Nuclear Chemistry, 2012,292(1):453-463. |
[17] | 岳鑫. 锑对斑马鱼的急性毒性效应及抗性研究[D]. 贵阳:贵州大学, 2019. |
Yue X. Study on the acute toxicity and resistance of antimony in Danio rerio[D]. Guiyang:Guizhou University, 2019. | |
[18] | 方展强, 杨丽华. 重金属在鲫幼鱼组织中的积累与分布[J]. 水利渔业, 2004,24(6):23-26. |
Fang ZQ, Yang LH. Accumulation and distribution of heavy metals in carassius auratus larva tissues[J]. Journal of Hydroecology, 2004,24(6):23-26. | |
[19] |
Visnji-jeftic Z, Jaric I, Jovanovic L, et al. Heavy metal and trace element accumulation in muscle, liver and gills of the Pontic shad(Alosa immaculata Bennet 1835)from the Danube River(Serbia)[J]. Microchemical Journal, 2010,95(2):341-344.
doi: 10.1016/j.microc.2010.02.004 URL |
[20] |
Pagenkopf GK. Gill surface interaction model for trace-metal toxicity to fishes:role of complexation, pH, and water hardness[J]. Environmental Science & Technology, 1983,17(6):342-347.
doi: 10.1021/es00112a007 URL |
[21] |
Ciji PP, Nandan SB. Toxicity of copper and zinc to Puntius parrah(Day, 1865)[J]. Marine Environmental Research, 2014,93:38-46.
doi: 10.1016/j.marenvres.2013.11.006 pmid: 24332362 |
[22] |
El-Moselhy KM, Othman AI, Abd El-Azem H, et al. Bioaccumulation of heavy metals in some tissues of fish in the Red Sea, Egypt[J]. Egyptian Journal of Basic and Applied Sciences, 2014,1(2):97-105.
doi: 10.1016/j.ejbas.2014.06.001 URL |
[23] |
Tuncsoy M, Duran S, Ay O, et al. Accumulation of copper in gill, liver, spleen, kidney and muscle tissues of Clarias gariepinus exposed to the metal singly and in mixture with chitosan[J]. Bulletin of Environmental Contamination and Toxicology, 2016,97(4):486-489.
doi: 10.1007/s00128-016-1900-x URL |
[24] | 李华. 重金属在淡水鱼体内的蓄积、排出机理及其金属硫蛋白的研究[D]. 哈尔滨:东北农业大学, 2013. |
Li H. The research of heavy metal accumulation and discharge mechanism in freshwater fish and its metallothionein[D]. Harbin:Northeast Agricultural University, 2013. | |
[25] |
Abel PD, Papoutsoglou SE. Lethal toxicity of cadmium to Cyprinus carpio and Tilapia aurea[J]. Bulletin of Environmental Contamination and Toxicology, 1986,37(1):382-386.
doi: 10.1007/BF01607777 URL |
[26] |
Zhang Y, Huang D, Wang Y, et al. Heavy metal accumulation and tissue damage in goldfish Carassius auratus[J]. Bulletin of Environmental Contamination and Toxicology, 2005,75(6):1191-1199.
doi: 10.1007/s00128-005-0875-9 URL |
[27] | 孔强, 赵岩, 付荣恕. 3种重金属联合对孔雀鱼肝脏抗氧化酶系统的影响[J]. 供水技术, 2010,4(6):10-13. |
Kong Q, Zhao Y, Fu R. Joint effects of Cu2+, Cd2+and Cr6+on the antioxidant enzymes of Poecilia reticulate[J]. Water Technology, 2010,4(6):10-13. | |
[28] |
Ruas CB, Carvalho CD, De Araujo HS, et al. Oxidative stress biomarkers of exposure in the blood of cichlid species from a metal-contaminated river[J]. Ecotoxicology and Environmental Safety, 2008,71(1):86-93.
doi: 10.1016/j.ecoenv.2007.08.018 URL |
[29] | Aytekin T, Firat O, Cogun HY, et al. Effects of metal mixtures(Cd+Cu+Cr+Pb+Zn)on antioxidant systems and lipid peroxidation in tissues of freshwater fish, Oreochromis niloticus[J]. Fresenius Environmental Bulletin, 2017,26(8):4963-4968. |
[30] | Chapman PM. Defining hormesis:comments on calabrese and Baldwin.[J]. Human & Experimental Toxicology, 2002,21(2):113-114. |
[31] | Kappus H. Lipid Peroxidation:mechanisms, analysis, enzymology and biological relevance[M]//Sies H. Oxidative Stress. London:Academic Press, 1985: 273-310. |
[32] |
Hou L, Yang Y, Shu H, et al. Changes in histopathology, enzyme activities, and the expression of relevant genes in zebrafish(Danio rerio)following long-term exposure to environmental levels of Thallium[J]. Bulletin of Environmental Contamination and Toxicology, 2017,99(5):574-581.
doi: 10.1007/s00128-017-2176-5 URL |
[33] |
Verlecar XN, Jena KB, Chainy GBN. Biochemical markers of oxidative stress in Perna viridis exposed to mercury and temperature[J]. Chemico-Biological Interactions, 2007,167(3):219-226.
doi: 10.1016/j.cbi.2007.01.018 URL |
[34] |
Asagba SO, Eriyamremu GE, Igberaese ME. Bioaccumulation of cadmium and its biochemical effect on selected tissues of the catfish(Clarias gariepinus)[J]. Fish Physiology and Biochemistry, 2008,34(1):61-69.
doi: 10.1007/s10695-007-9147-4 URL |
[35] |
Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010,48(12):909-930.
doi: 10.1016/j.plaphy.2010.08.016 URL |
[36] |
Atli G, Canli M. Response of antioxidant system of freshwater fish Oreochromis niloticus to acute and chronic metal(Cd, Cu, Cr, Zn, Fe)exposures[J]. Ecotoxicology and Environmental Safety, 2010,73(8):1884-1889.
doi: 10.1016/j.ecoenv.2010.09.005 URL |
[37] | Xie D, Li Y, Liu Z, et al. Inhibitory effect of cadmium exposure on digestive activity, antioxidant capacity and immune defense in the intestine of yellow catfish(Pelteobagrus fulvidraco)[J]. Comparative Biochemistry and Physiology C-toxicology & Pharmacology, 2019,222:65-73. |
[38] | 麻艳群, 卢克焕, 黄凯, 等. Cu2+胁迫对禾花鲤(Procypris mterus)过氧化氢酶活性的影响[J]. 安徽农业大学学报, 2010,37(4):623-626. |
Ma Y, Lu K, Huang K, et al. Effect of copper stress on catalase activity of carp(Procypris mterus)[J]. Journal of Anhui Agricultural University, 2010,37(4):623-626. | |
[39] |
Firat O, Cogun HY, Aslanyavrusu S, et al. Antioxidant responses and metal accumulation in tissues of Nile tilapia Oreochromis niloticus under Zn, Cd and Zn + Cd exposures[J]. Journal of Applied Toxicology, 2009,29(4):295-301.
doi: 10.1002/jat.v29:4 URL |
[40] | Fatima M, Usmani N, Firdaus F, et al. In vivo induction of antioxidant response and oxidative stress associated with genotoxicity and histopathological alteration in two commercial fish species due to heavy metals exposure in northern India(Kali)river[J]. Comparative Biochemistry and Physiology C-toxicology & Pharmacology, 2015,176:17-30. |
[41] |
Pandey S, Parvez S, Ansari RA, et al. Effects of exposure to multiple trace metals on biochemical, histological and ultrastructural features of gills of a freshwater fish, Channa punctata Bloch[J]. Chemico-Biological Interactions, 2008,174(3):183-192.
doi: 10.1016/j.cbi.2008.05.014 URL |
[42] |
Atli G, Canli M. Responses of metallothionein and reduced glutathione in a freshwater fish Oreochromis niloticus following metal exposures[J]. Environmental Toxicology and Pharmacology, 2008,25(1):33-38.
doi: 10.1016/j.etap.2007.08.007 URL |
[43] | Javed M, Usmani N, Ahmad I, et al. Studies on the oxidative stress and gill histopathology in Channa punctatus of the canal receiving heavy metal-loaded effluent of Kasimpur Thermal Power Plant[J]. Environmental Monitoring & Assessment, 2015,187(1):1-11. |
[44] |
Srikanth K, Pereira E, Duarte AC, et al. Glutathione and its dependent enzymes’modulatory responses to toxic metals and metalloids in fish:A review[J]. Environmental Science and Pollution Research, 2013,20(4):2133-2149.
doi: 10.1007/s11356-012-1459-y URL |
[45] | 肖丹, 王海燕, 韩大雄. Hg2+、Cu2+、Zn2+、Cd2+胁迫下罗非鱼离体肝脏中GSH和GST的响应[J]. 海洋环境科学, 2014,33(3):346-350. |
Xiao D, Wang H, Han D. Responses of GSH and GST in liver of Mossambica tilapia under Hg2+, Cu2+, Zn2+and Cd2+ stress in vitro[J]. Marine Environmental Science, 2014,33(3):346-350. | |
[46] |
Canesi L, Viarengo A, Leonzio C, et al. Heavy metals and glutathione metabolism in mussel tissues[J]. Aquatic Toxicology, 1999,46(1):67-76.
doi: 10.1016/S0166-445X(98)00116-7 URL |
[47] |
Wu H, Zhao X, Sun S, et al. Variations of antioxidant enzyme activity and malondialdehyde content in nemertean Cephalothrix hongkongiensis after exposure to heavy metals[J]. Chinese Journal of Oceanology and Limnology, 2010,28(4):917-923.
doi: 10.1007/s00343-010-9050-1 URL |
[48] |
Das D, Moniruzzaman M, Sarbajna A, et al. Effect of heavy metals on tissue-specific antioxidant response in Indian major carps[J]. Environmental Science and Pollution Research, 2017,24(22):18010-18024.
doi: 10.1007/s11356-017-9415-5 URL |
[49] |
Gutteridge JM. Lipid peroxidation and antioxidants as biomarkers of tissue damage[J]. Clinical Chemistry, 1995,41(12):1819-1828.
doi: 10.1093/clinchem/41.12.1819 URL |
[50] | 曾乐意. 长江上游几种鱼类重金属含量及饲料铅对中华倒刺鲃的生理生态学影响[D]. 重庆:西南大学, 2012. |
Zeng LY. The contents of heavy metals in several fish species from upstream of the Yangtze River and ecophysiological effects of the dietary lead(Pb)on Spinibarbus sinensis[D]. Chongqing:Southwest University, 2012. |
[1] | KANG Ling-yun, HAN Lu-lu, HAN De-ping, CHEN Jian-sheng, GAN Han-ling, XING Kai, MA You-ji, CUI Kai. Effect of Melatonin on Protecting the Jejunum Mucosal Epithelial Cells from Oxidative Stress Damage [J]. Biotechnology Bulletin, 2023, 39(9): 291-299. |
[2] | YOU Zi-juan, CHEN Han-lin, DENG Fu-cai. Research Progress in the Extraction and Functional Activities of Bioactive Peptides from Fish Skin [J]. Biotechnology Bulletin, 2023, 39(7): 91-104. |
[3] | WANG Chun-yu, LI Zheng-jun, WANG Ping, ZHANG Li-xia. Physiological and Biochemical Analysis of Drought Resistance in Sorghum Cuticular Wax-deficient Mutant sb1 [J]. Biotechnology Bulletin, 2023, 39(5): 160-167. |
[4] | YANG Mao, LIN Yu-feng, DAI Yang-shuo, PAN Su-jun, PENG Wei-ye, YAN Ming-xiong, LI Wei, WANG Bing, DAI Liang-ying. OsDIS1 Negatively Regulates Rice Drought Tolerance Through Antioxidant Pathways [J]. Biotechnology Bulletin, 2023, 39(2): 88-95. |
[5] | ZHAO Jia, ZHAO Fei-yan, SHEN Xin, GAO Guang-qi, SUN Zhi-hong. Advances in the Antioxidant Activities of Lactic Acid Bacteria and Their Applications [J]. Biotechnology Bulletin, 2023, 39(11): 182-190. |
[6] | ZHU Jin-cheng, YANG Yang, LOU Hui, ZHANG Wei. Regulation of Fusarium wilt Resistance in Cotton by Exogenous Melatonin [J]. Biotechnology Bulletin, 2023, 39(1): 243-252. |
[7] | ZHANG Feng-wen, ZHOU Li-ya, DONG Chao, SHI Yan-mao. Purification of Antioxidant Peptides from Natto Supernatant and Study on Its Activity [J]. Biotechnology Bulletin, 2022, 38(2): 158-165. |
[8] | WANG Gang, LUO Jian-xun, PU Shang-rao, LI Ya-ping, WANG Gang, SUN Zhi-peng. Effects of Shading on the Active Component 10-DAB and Mineral Nutrient Accumulation of Taxus madia × T. Yunnanensis ‘Yunman’ [J]. Biotechnology Bulletin, 2022, 38(11): 175-184. |
[9] | CEN Xiao-long, LEI Xi, MA Shi-yun, CHEN Qian-ru, HUANG Zun-xi, ZHOU Jun-pei, ZHANG Rui. Heterologous Expression and Characterization of the Hyaluronic Acid Lyase HylS from Staphylococcus aureus [J]. Biotechnology Bulletin, 2022, 38(1): 157-167. |
[10] | LI Ping, HU Jian-ran, SHI Bao-zhong, ZHAO Jing-lei. Extraction of Scutellaria baicalensis Polysaccharides and Its Antioxidant and Antitumor Activities [J]. Biotechnology Bulletin, 2021, 37(4): 155-163. |
[11] | YANG Li, WANG Bo, LI Wen-jiao, WANG Xing-jun, ZHAO Shu-zhen. Research Progress on Production,Scavenging and Signal Transduction of ROS Under Drought Stress [J]. Biotechnology Bulletin, 2021, 37(4): 194-203. |
[12] | MA Xu-hui, CHEN Ru-mei, LIU Xiao-qing, ZHAO Jun, ZHANG Xia. Effects of Melatonin on Root Growth and Drought Tolerance of Maize Seedlings [J]. Biotechnology Bulletin, 2021, 37(2): 1-14. |
[13] | WANG Shan-shan, SUN Min, WANG Yong-xia, LI Wei-dong, HAN Chun-chao. Correlation Detween the Dynamic Changes of Morphological Structure and Molecular Weight of Coprinus comatus Extracellular Polysaccharides and Their Antioxidant Activity [J]. Biotechnology Bulletin, 2021, 37(2): 129-137. |
[14] | WANG Zhao-yu, CHANG Ming-chang, XU Li-jing, MENG Jun-long, ZUO Ning-ke, PAN Xu. Structural Characterization,Physicochemical Properties of Melanin from Fruiting Body,Hyphae and Spores of Ganoderma lucidum [J]. Biotechnology Bulletin, 2021, 37(11): 81-91. |
[15] | ZHANG Feng-pei, XU Hui, QIU Shao-feng, ZHANG Jun-li, WU Xiao-ping, FU Jun-sheng. Study on Antioxidant and Liver Protection of Polysaccharide from Lyophyllum decastes [J]. Biotechnology Bulletin, 2021, 37(11): 92-100. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||