Biotechnology Bulletin ›› 2014, Vol. 0 ›› Issue (5): 1-7.
• Review and editorial • Next Articles
Song Weihua1,2 Liu Kun1 Zhao Tongbiao1
Received:
2013-10-08
Online:
2014-05-23
Published:
2014-05-24
Song Weihua, Liu Kun, Zhao Tongbiao. Progress in Induced Pluripotent Stem Cells[J]. Biotechnology Bulletin, 2014, 0(5): 1-7.
[1] Hochedlinger K, Plath K. Epigenetic reprogramming and induced pluripotency[J]. Development, 2009, 136(4):509-523. [2] Spemann H. Embryonic development and induction[M]. New Haven, CT, USA:Yale University Press, 1938. [3] Briggs R, King TJ. Transplantation of living nuclei from blastula cells into enucleated frogs' eggs[J]. Proc Natl Acad Sci USA, 1952, 38(5):455-463. [4] Gurdon JB. The developmental capacity of nuclei taken from intes-tinal epithelium cells of feeding tadpoles[J]. J Embryol Exp Morp-hol, 1962, 10(4):622-640. [5] Gurdon J, Graham C. Nuclear changes during cell differentiation[J]. Science Progress, 1967, 55(218):259. [6] Tachibana M, Amato P, Sparman M, et al. Human embryonic stem cells derived by somatic cell nuclear transfer[J]. Cell, 2013, 153(6):1228-1238. [7] Stevens Jr LC, Little CC. Spontaneous testicular teratomas in an inbred strain of mice[J]. Proc Natl Acad Sci USA, 1954, 40(11):1080. [8] Kleinsmith LJ, Pierce GB. Multipotentiality of single embryonal carcinoma cells[J]. Cancer Res, 1964, 24(9):1544-1551. [9] Miller RA, Ruddle FH. Pluripotent teratocarcinoma-thymus somatic cell hybrids[J]. Cell, 1976, 9(1):45-55. [10] Tada M, Takahama Y, Abe K, et al. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells[J]. Current Biology, 2001, 11(19):1553-1558. [11] Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts[J]. Cell, 1987, 51(6):987-1000. [12] Xie H, Ye M, Feng R, et al. Stepwise reprogramming of B cells into macrophages[J]. Cell, 2004, 117(5):663-676. [13] Laiosa CV, Stadtfeld M, Xie H, et al. Reprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBPα and PU. 1 transcription factors[J]. Immunity, 2006, 25(5):731-744. [14] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676. [15] Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state[J]. Nature, 2007, 448(7151):318-324. [16] Kang L, Wang J, Zhang Y, et al. iPS cells can support full-term development of tetraploid blastocyst-complemented embryos[J]. Cell Stem Cell, 2009, 5(2):135-138. [17] Zhao XY, Li W, Lv Z, et al. iPS cells produce viable mice through tetraploid complementation[J]. Nature, 2009, 461:86-90. [18] Zhao XY, Lv Z, Li W, et al. Production of mice using iPS cells and tetraploid complementation[J]. Nat Protoc, 2010, 5:963-971. [19] Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5):861-872. [20] Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science, 2007, 318(5858):1917-1920. [21] Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells[J]. Nature, 2007, 448(7151):313-317. [22] Maherali N, Ahfeldt T, Rigamonti A, et al. A high-efficiency system for the generation and study of human induced pluripotent stem cells[J]. Cell Stem Cell, 2008, 3(3):340-345. [23] Sridharan R, Tchieu J, Mason MJ, et al. Role of the murine reprogramming factors in the induction of pluripotency[J]. Cell, 2009, 136(2):364-377. [24] Mikkelsen TS, Hanna J, Zhang X, et al. Dissecting direct reprogra-mming through integrative genomic analysis[J]. Nature, 2008, 454(7200):49-55. [25] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676. [26] Stadtfeld M, Nagaya M, Utikal J, et al. Induced pluripotent stem cells generated without viral integration[J]. Science, 2008, 322(5903):945-949. [27] Kaji K, Norrby K, Paca A, et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors[J]. Nature, 2009, 458(7239):771-775. [28] Kim D, Kim CH, Moon JI, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins[J]. Cell Stem Cell, 2009, 4(6):472-476. [29] Thier M, Munst B, Edenhofer F. Exploring refined conditions for reprogramming cells by recombinant Oct4 protein[J]. Int J Dev Biol, 2010, 54(11-12):1713-1721. [30] Thier M, Munst B, Mielke S, et al. Cellular reprogramming employing recombinant sox2 protein[J]. Stem Cells Int, 2012:549846. [31] Anokye-Danso F, Trivedi CM, Juhr D, et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency[J]. Cell Stem Cell, 2011, 8(4):376-388. [32] Subramanyam D, Lamouille S, Judson RL, et al. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells[J]. Nat Biotechnol, 2011, 29:443-448. [33] Babiarz JE, Ruby JG, Wang Y, et al. Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs[J]. Genes Dev, 2008, 22(20):2773-2785. [34] Betel D, Wilson M, Gabow A, et al. The microRNA.org resource:targets and expression[J]. Nucleic Acids Res, 2008, 36(Database issue):D149-153. [35] Bhutani N, Brady JJ, Damian M, et al. Reprogramming towards pluripotency requires AID-dependent DNA demethylation[J]. Nature, 2010, 463(7284):1042-1047. [36] Judson RL, Babiarz JE, Venere M, et al. Embryonic stem cell-specific microRNAs promote induced pluripotency[J]. Nat Biotechnol, 2009, 27(5):459-461. [37] Lagarkova MA, Shutova MV, Bogomazova AN, et al. Induction of pluripotency in human endothelial cells resets epigenetic profile on genome scale[J]. Cell Cycle, 9(5):937-946. [38] Mali P, Chou BK, Yen J, et al. Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes[J]. Stem Cells, 2010, 28(4):713-720. [39] Zheng Z, Jian J, Zhang X, et al. Reprogramming of human fibroblasts into multipotent cells with a single ECM proteoglycan, fibromodulin[J]. Biomaterials, 2012, 33(24):5821-5831. [40] Zhao T, Zhang ZN, Rong Z, et al. Immunogenicity of induced pluripotent stem cells[J]. Nature, 2011, 474(7350):212-215. [41] Zhou H, Wu S, Joo JY, et al. Generation of induced pluripotent stem cells using recombinant proteins[J]. Cell Stem Cell, 2009, 4:381. [42] Cho HJ, Lee CS, Kwon YW, et al. Induction of pluripotent stem cells from adult somatic cells by protein-based reprogramming without genetic manipulation[J]. Blood, 2010, 116:386-395. [43] Hou P, Li Y, Zhang X, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds[J]. Science, 2013, 341(6146):651-654. [44] Polo JM, Anderssen E, Walsh RM, et al. A molecular roadmap of reprogramming somatic cells into iPS cells[J]. Cell, 2012, 151:1617-1632. [45] Buganim Y, Faddah DA, Cheng AW, et al. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase[J]. Cell, 2012, 150:1209-1222. [46] Takikawa S, Ray C, Wang X, et al. Genomic imprinting is variably lost during reprogramming of mouse iPS cells[J]. Stem Cell Research, 2013, 11(2):861-873. [47] Liu X, Sun H, Qi J, et al. Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT-MET mechanism for optimal reprogramm-ing[J]. Nat Cell Biol, 2013, 15(7):829-838. [48] Bedzhov I, Alotaibi H, Basilicata MF, et al. Adhesion, but not a specific cadherin code, is indispensable for ES cell and induced pluripotency[J]. Stem Cell Res, 2013, 11(3):1250-1263. [49] Muraro MJ, Kempe H, Verschure PJ. The dynamics of induced pluripotency and its behavior captured in gene network motifs[J]. Stem Cells, 2013, 31(5):838-848. [50] Meissner A, Wernig M, Jaenisch R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells[J]. Nat Biotechnol, 2007, 25(10):1177-1181. [51] Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state[J]. Nature, 2007, 448(7151):318-324. [52] Stadtfeld M, Apostolou E, Akutsu H, et al. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells[J]. Nature, 2010, 465(7295):175-181. [53] Liu L, Luo GZ, Yang W, et al. Activation of the imprinted Dlk1-Dio3 region correlates with pluripotency levels of mouse stem cells[J]. J Biol Chem, 285(25):19483-19490. [54] Mattout A, Biran A, Meshorer E. Global epigenetic changes during somatic cell reprogramming to iPS cells[J].J Mol Cell Biol, 2011, 3(6):341-350. [55] Razak SRA, Ueno K, Takayama N, et al. Profiling of microRNA in human and mouse ES and iPS cells reveals overlapping but distinct microRNA expression patterns[J]. PLOS ONE, 2013, 8(9):e73532. [56] Rais Y, Zviran A, Geula S, et al. Deterministic direct reprogramming of somatic cells to pluripotency[J]. Nature, 2013, 502:65-70. [57] Shu J, Wu C, Wu Y, et al. Induction of pluripotency in mouse somatic cells with lineage specifiers[J]. Cell, 2013, 153(5):963-975. [58] Jung-Il C, Dong-Wook K, Nayeon L, et al. Quantitative proteomic analysis of induced pluripotent stem cells derived from a human Huntington's disease patient[J]. Biochemical Journal, 2012, 446(3):359-371. [59] Nguyen HN, Byers B, Cord B, et al. LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress[J]. Cell Stem Cell, 2011, 8(3):267-280. [60] Mitne-Neto M, Machado-Costa M, Marchetto MC, et al. Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients[J]. Human Molecular Genetics, 2011, 20(18):3642-3652. [61] Kondo T, Asai M, Tsukita K, et al. Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness[J]. Cell Stem Cell, 2013, 12(4):487-496. [62] Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain development and microcephaly[J]. Nature, 2013, 501(7467):373-379. [63] Hanna J, Wernig M, Markoulaki S, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin[J]. Science, 2007, 318(5858):1920-1923. [64] Yan B, Abdelli LS, Singla DK. Transplanted induced pluripotent stem cells improve cardiac function and induce neovascularization in the infarcted hearts of db/db mice[J]. Mol Pharm, 2011, 8:1602-1610. [65] Morizane A, Doi D, Kikuchi T, et al. Direct comparison of autologous and allogeneic transplantation of iPSC-derived neural cells in the brain of a nonhuman primate[J]. Stem Cell Reports, 2013, 1(4):283-292. [66] Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for macular degeneration:a preliminary report[J]. The Lancet, 2012, 379(9817):713-720. |
[1] | LIN Hong-yan, GUO Xiao-rui, LIU Di, LI Hui, LU Hai. Molecular Mechanism of Transcriptional Factor AtbHLH68 in Regulating Cell Wall Development by Transcriptome Analysis [J]. Biotechnology Bulletin, 2023, 39(9): 105-116. |
[2] | LIU Zhen-yin, DUAN Zhi-zhen, PENG Ting, WANG Tong-xin, WANG Jian. Establishment and Optimization of Virus-induced Gene Silencing System in Bougainvillea peruviana ‘Thimma’ [J]. Biotechnology Bulletin, 2023, 39(7): 123-130. |
[3] | WU Hao, LIU Zi-wei, ZHENG Ying, DAI Ya-wen, SHI Quan. Study on the Heterogeneity of Human Gingival Mesenchymal Stem Cells at Single Cell Level [J]. Biotechnology Bulletin, 2023, 39(7): 325-332. |
[4] | ZENG Hong, ZENG Rui-lin, FU Wei, JI Wen-hui, LAN Dao-liang. Research Progress in the Application and Establishment of Bovine Induced Pluripotent Stem Cells [J]. Biotechnology Bulletin, 2023, 39(5): 130-141. |
[5] | LI Xiu-qing, HU Zi-yao, LEI Jian-feng, DAI Pei-hong, LIU Chao, DENG Jia-hui, LIU Min, SUN Ling, LIU Xiao-dong, LI Yue. Cloning and Functional Analysis of Gene GhTIFY9 Related to Cotton Verticillium Wilt Resistance [J]. Biotechnology Bulletin, 2022, 38(8): 127-134. |
[6] | WU Yu-ping, ZHOU Yong, PU Juan, LI Hui, ZHANG Jin-gang, ZHU Yan-ping. Application Progress of Metabolomics in Tumor Drug Target Screening [J]. Biotechnology Bulletin, 2022, 38(1): 311-318. |
[7] | ZHANG Chen, ZUO Qi-sheng, ZOU Yi-chen, ZHAO Juan-juan, ZHANG Ya-ni, LI Bi-chun. Study on the Function of Glycolysis in Inducing Chicken PGCLC in vitro Formation [J]. Biotechnology Bulletin, 2021, 37(6): 163-170. |
[8] | GAO Peng-fei, XI Fei-hu, ZHANG Ze-yu, HU Kai-qiang, CHEN Kai, WEI Wen-tao, DING Jia-zhi, GU Lian-feng. Research Progress of Plant VIGS Technology and Its Application in Forestry Science [J]. Biotechnology Bulletin, 2021, 37(5): 141-153. |
[9] | JIN Qiu-xia, WANG Si-hong, JIN Li-hua. Research Progress on Drosophila Intestinal Stem Cells and Intestinal Microflora [J]. Biotechnology Bulletin, 2021, 37(4): 245-250. |
[10] | WANG Wei-xiong, SHEN Bo, JIA Hong-bai, QIAO Jun-qing, NIU Ben. Application of Rhizospheric Biocontrol Consortia and the Potential Mechanisms of Their Enhancing Efficacy on Disease-suppressive Effect [J]. Biotechnology Bulletin, 2020, 36(9): 31-41. |
[11] | YANG Jia-yi, NIU Chun-yan, LIU Ying-ying, FU Bo-qiang, WANG Jing. Analysis on Detection Methods for Somatic Cells in Raw Milk and Necessity of Measurement Calibration [J]. Biotechnology Bulletin, 2020, 36(5): 16-21. |
[12] | JI Cháo, WáNG Xiáo-hui, LIU Xun-li. Reseárch Progress on the áction Mechánism of Plánt Growth-promoting Bácteriá Under Sált Stress [J]. Biotechnology Bulletin, 2020, 36(4): 131-143. |
[13] | LI Jian-tao, LIU Xian-hua, HE Yao-dong, WANG Guang-yi. Mutagenesis Breeding in DHA Production by Oleaginous Microorganisms [J]. Biotechnology Bulletin, 2020, 36(1): 110-115. |
[14] | LUO Dong-zhang, LUO Hui-na, ZHAN Xiao-shu, LI Xin-yi, HUANG Man-qing, LIN Jie-wei, HUANG Qi-liang, HONG Chun, LIN Hao-mei, CHEN Sheng-feng, WANG Bing-yun. Comparison of Biological Characteristics of Feline Mesenchymal Stem Cells Derived from Four Different Tissues [J]. Biotechnology Bulletin, 2019, 35(7): 39-45. |
[15] | WU Li-fang, WEI Xiao-mei, LU Wei-dong. Embryonic Callus Induction of Sophora davidii and Their Somatic Embryogenesis and Germination [J]. Biotechnology Bulletin, 2019, 35(4): 13-19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||