[1] Wyckoff TJ, Taylor JA, Salama NR. Beyond growth:novel functions for bacterial cell wall hydrolases[J]. Trends Microbiol, 2012, 20(11):540-547. [2]Sycuro LK, Wyckoff TJ, Biboy J, et al. Multiple peptidoglycan modification networks modulate Helicobacter pylori’s cell shape, motility, and colonization potential[J]. PLoS Pathog, 2012, 8(3):e1002603. [3]McKenney PT, Driks A, Eichenberger P. The Bacillus subtilis endospore:assembly and functions of the multilayered coat[J]. Nat Rev Microbiol, 2013, 11(1):33-44. [4]Sanahuja G, Banakar R, Twyman RM, et al. Bacillus thuringiensis:a century of research, development and commercial applications[J]. Plant Biotechnol J, 2011, 9(3):283-300. [5] Qiu P, Li Y, Shiloach J, et al. Bacillus anthracis cell wall peptidoglycan but not lethal or edema toxins produces changes consistent with disseminated intravascular coagulation in a rat model[J]. J Infect Dise, 2013, 208(6):978-989. [6] Bottone EJ. Bacillus cereus, a volatile human pathogen[J]. Clin Microbiol Rev, 2010, 23(2):382-398. [7] Vollmer W, Joris B, Charlier P, Foster S. Bacterial peptidoglycan(murein) hydrolases[J]. FEMS Microbiol Rev, 2008, 32(2):259-286. [8] Bochtler M, Odintsov SG, Marcyjaniak M, Sabala I. Similar active sites in lysostaphins and D-Ala-D-Ala metallopeptidases[J]. Protein Sci, 2004, 13(4):854-861. [9] Yang J, Peng Q, Chen Z, et al. Transcriptional regulation and characteristics of a novel N-acetylmuramoyl-L-alanine amidase gene involved in Bacillus thuringiensis mother cell lysis[J]. J Bacteriol, 2013, 195(12):2887-2897. [10]Smith TJ, Blackman SA, Foster SJ. Autolysins of Bacillus subtilis:multiple enzymes with multiple functions[J]. Microbiology, 2000, 146(Pt 2)(249-262). [11] Van Heijenoort J. Peptidoglycan hydrolases of Escherichia coli[J]. Microbiol Mol Biol Rev, 2011, 75(4):636-663. [12] Firczuk M, Bochtler M. Folds and activities of peptidoglycan amidases[J]. FEMS Microbiol Rev, 2007, 31(6):676-691. [13] Blackman SA, Smith TJ, Foster SJ. The role of autolysins during vegetative growth of Bacillus subtilis 168[J]. Microbiology, 1998, 144(Pt 1):73-82. [14]Smith TJ, Blackman SA, Foster SJ. Autolysins of Bacillus subtilis:multiple enzymes with multiple functions[J]. Microbiology, 2000, 146:249-262. [15] Vollmer W. Bacterial growth does require peptidoglycan hydrolases[J]. Mol Microbiol, 2012, 86(5):1031-1035. [16]Sudiarta IP, Fukushima T, Sekiguchi J. Bacillus subtilis CwlP of the SP-{beta} prophage has two novel peptidoglycan hydrolase domains, muramidase and cross-linkage digesting DD-endopeptidase[J]. J Biol Chem, 2010, 285(53):41232-41243. [17]Noone D, Salzberg LI, Botella E, et al. A highly unstable transcript makes CwlO D, L-endopeptidase expression responsive to growth conditions in Bacillus subtilis[J]. J Bacteriol, 2014, 196(2):237-247. [18]Errington J. Regulation of endospore formation in Bacillus subtilis[J]. Nat Rev Microbiol, 2003, 1(2):117-126. [19]Carballido-Lopez R, Formstone A, Li Y, et al. Actin homolog MreBH governs cell morphogenesis by localization of the cell wall hydrolase LytE[J]. Dev Cell, 2006, 11(3):399-409. [20]Graham LL, Beveridge TJ. Structural differentiation of the Bacillus subtilis 168 cell wall[J]. J Bacteriol, 1994, 176(5):1413-1421. [21]Merad T, Archibald AR, Hancock IC, et al. Cell wall assembly in Bacillus subtilis:visualization of old and new wall material by electron microscopic examination of samples stained selectively for teichoic acid and teichuronic acid[J]. J Gen Microbiol, 1989, 135(3):645-655. [22]Atrih A, Bacher G, Allmaier G, et al. Analysis of peptidoglycan stru- cture from vegetative cells of Bacillus subtilis 168 and role of PBP 5 in peptidoglycan maturation[J]. J Bacteriol, 1999, 181(13):3956-3966. [23]Bramkamp M, van Baarle S. Division site selection in rod-shaped bacteria[J]. Curr Opin Microbiol, 2009, 12(6):683-688. [24]Den Blaauwen T, de Pedro MA, Nguyen-Disteche M, Ayala JA. Morphogenesis of rod-shaped sacculi[J]. FEMS Microbiol Rev, 2008, 32(2):321-344. [25]Hashimoto M, Ooiwa S, Sekiguchi J. Synthetic lethality of the lytE cwlO genotype in Bacillus subtilis is caused by lack of D, L-endopeptidase activity at the lateral cell wall[J]. J Bacteriol, 2012, 194(4):796-803. [26]Typas A, Banzhaf M, Gross CA, Vollmer W. From the regulation of peptidoglycan synthesis to bacterial growth and morphology[J]. Nat Rev Microbiol, 2012, 10(2):123-136. [27]Heffron JD, Sherry N, Popham DL. In vitro studies of peptidoglycan binding and hydrolysis by the Bacillus anthracis germination-specific lytic enzyme SleB[J]. J Bacteriol, 2011, 193(1):125-131. [28]Paredes-Sabja D, Setlow P, Sarker MR. Germination of spores of bacillales and clostridiales species:mechanisms and proteins involved[J]. Trends Microbiol, 2011, 19(2):85-94. [29]Popham DL. Specialized peptidoglycan of the bacterial endospore:the inner wall of the lockbox[J]. Cell Mol Life Sci, 2002, 59(3):426-433. [30]Li Y, Butzin XY, Davis A, et al. Activity and regulation of various forms of CwlJ, SleB, and YpeB proteins in degrading cortex peptidoglycan of spores of Bacillus species in vitro and during spore germination[J]. J Bacteriol, 2013, 195(11):2530-2540. [31]Giebel JD, Carr KA, Anderson EC, Hanna PC. The germination-specific lytic enzymes SleB, CwlJ1, and CwlJ2 each contribute to Bacillus anthracis spore germination and virulence[J]. J Bacteriol, 2009, 191(18):5569-5576. [32]Heffron JD, Lambert EA, Sherry N, Popham DL. Contributions of four cortex lytic enzymes to germination of Bacillus anthracis spores[J]. J Bacteriol, 2010, 192(3):763-770. [33]Jing X, Robinson HR, Heffron JD, et al. The catalytic domain of the germination-specific lytic transglycosylase SleB from Bacillus anthracis displays a unique active site topology[J]. Proteins, 2012, 80(10):2469-2475. [34]Li Y, Jin K, Setlow B, et al. Crystal structure of the catalytic domain of the Bacillus cereus SleB protein, important in cortex peptidoglycan degradation during spore germination[J]. J Bacteriol, 2012, 194(17):4537-4545. [35]Horsburgh GJ, Atrih A, Foster SJ. Characterization of LytH, a differentiation-associated peptidoglycan hydrolase of Bacillus subtilis involved in endospore cortex maturation[J]. Journal of Bacteriology, 2003, 185(13):3813-3820. [36]Higgins D, Dworkin J. Recent progress in Bacillus subtilis sporulation[J]. FEMS Microbiol Rev, 2012, 36(1):131-148. [37] Levdikov VM, Blagova EV, McFeat A, et al. Structure of compone-nts of an intercellular channel complex in sporulating Bacillus subtilis[J]. Proc Natl Acad Sci USA, 2012, 109(14):5441-5445. [38] Meisner J, Wang X, Serrano M, et al. A channel connecting the mo-ther cell and forespore during bacterial endospore formation[J]. Proc Natl Acad Sci USA, 2008, 105(39):15100-15105. [39] Doan T, Marquis KA, Rudner DZ. Subcellular localization of a sporulation membrane protein is achieved through a network of interactions along and across the septum[J]. Mol Microbiol, 2005, 55(6):1767-1781. [40]Meisner J, Moran CP, Jr. A LytM domain dictates the localization of proteins to the mother cell-forespore interface during bacterial endospore formation[J]. J Bacteriol, 2011, 193(3):591-598. [41]Camp AH, Losick R. A novel pathway of intercellular signalling in Bacillus subtilis involves a protein with similarity to a component of type III secretion channels[J]. Mol Microbiol, 2008, 69(2):402-417. [42]Rodrigues CD, Marquis KA, Meisner J, Rudner DZ. Peptidoglycan hydrolysis is required for assembly and activity of the transenvelope secretion complex during sporulation in Bacillus subtilis[J]. Mol Microbiol, 2013, 89(6):1039-1052. [43]Bravo A, Likitvivatanavong S, Gill SS, Soberon M. Bacillus thuringiensis:a story of a successful bioinsecticide[J]. Insect Biochem Mol Biol, 2011, 41(7):423-431. [44]Yang W, He K, Zhang J, Guo S. pH-controlled Bacillus thuringiensis Cry1Ac protoxin loading and release from polyelectrolyte microcapsules[J]. PLoS One, 2012, 7(9):e45233. [45]Pardo-Lopez L, Soberon M, Bravo A. Bacillus thuringiensis insecticidal three-domain Cry toxins:mode of action, insect resistance and consequences for crop protection[J]. FEMS Microbiol Rev, 2013, 37(1):3-22. [46]Royet J, Dziarski R. Peptidoglycan recognition proteins:pleiotropic sensors and effectors of antimicrobial defences[J]. Nat Rev Microbiol, 2007, 5(4):264-277. [47]Sun D, Raisley B, Langer M, et al. Anti-peptidoglycan antibodies and Fcγ receptors are the key mediators of inflammation in Gram-positive sepsis[J]. J Immunol, 2012, 189(5):2423-2431. [48]Sun D, Popescu NI, Raisley B, et al. Bacillus anthracis peptidogly- can activates human platelets through FcγRII and complement[J]. Blood, 2013, 122(4):571-579. [49]Atilano ML, Pereira PM, Vaz F, et al. Bacterial autolysins trim cell surface peptidoglycan to prevent detection by the Drosophila innate immune system[J]. Elife, 2014, 3:e02277. [50]Ishikawa S, Hara Y, Ohnishi R, Sekiguchi J. Regulation of a new cell wall hydrolase gene, cwlF, which affects cell separation in Bacillus subtilis[J]. J Bacteriol, 1998, 180(9):2549-2555. [51]Yang H, Wang P, Peng Q, et al. Weak transcription of the cry1Ac gene in nonsporulating Bacillus thuringiensis cells[J]. Appl Environ Microbiol, 2012, 78(18):6466-6474. [52]Li F, Yan Y, Wang D, et al. Cry8Ca2-containing layer-by-layer microcapsules for the pH-controlled release of crystal protein[J]. J Microencapsul, 2014, 31(6):567-572. |