Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (11): 8-14.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0443
Previous Articles Next Articles
WANG Chun-yu1, ZHANG Qian2
Received:
2018-05-12
Online:
2018-11-26
Published:
2018-11-28
WANG Chun-yu, ZHANG Qian. Research Progress on Plant NAC Transcription Factors[J]. Biotechnology Bulletin, 2018, 34(11): 8-14.
[1] Souer E, Al E.The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries[J]. Cell, 1996, 85(2):159-170. [2] Aida M, Ishida T, Fukaki H, et al.Genes involved in organ separation in Arabidopsis:an analysis of the cup-shaped cotyledon mutant[J]. Plant Cell, 1997, 9(6):841-857. [3] 陈娜, 蒋晶, 曹必好, 等. 植物NAC转录因子功能研究新进展[J]. 分子植物育种, 2015, 13(6):1407-1414. [4] 康桂娟, 曾日中, 聂智毅, 等. 植物NAC转录因子的研究进展[J]. 生物技术通报, 2012(11):21-26. [5] 李伟, 韩蕾, 钱永强, 等. 植物NAC转录因子的种类、特征及功能[J]. 应用与环境生物学报, 2011, 17(4):596-606. [6] Liu L, White MJ, Macrae TH.Transcription factors and their genes in higher plants functional domains, evolution and regulation[J]. Febs Journal, 2010, 262(2):247-257. [7] Olsen AN, Ernst HA, Leggio LL, et al.NAC transcription factors:structurally distinct, functionally diverse[J]. Trends in Plant Science, 2005, 10(2):79-87. [8] Ooka H, Satoh K, Doi K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Research An International Journal for Rapid Publication of Reports on Genes & Genomes, 2003, 10(6):239. [9] Delessert C, Kazan K, Wilson IW, et al.The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis[J]. Plant Journal, 2005, 43(5):745. [10] Wang X, Basnayake BM, Zhang H, et al.The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens[J]. Molecular Plant-Microbe Interactions, 2009, 22(10):1227-1238. [11] Nikovics K, Blein T, Peaucelle A, et al.The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis[J]. Plant Cell, 2006, 18(11):2929-2945. [12] Evans O.陆地棉GhNAC18和GhNAC20基因在叶片衰老和胁迫应答中的功能分析[D]. 北京:中国农业科学院, 2016. [13] 闫朝辉, 李桂荣, 穆金燕, 等. ‘粉红亚都蜜’葡萄NAC转录因子基因VvDRL1的功能初步分析[J]. 园艺学报, 2016, 43(4):643-652. [14] 岳俊燕, 岳文冉, 杨杞, 等. 中间锦鸡儿转录因子基因 CiNAC1的克隆及功能分析[J]. 西北植物学报, 2016, 36(7):1285-1293. [15] Jiang GX, Yan H, Wu F, et al.Litchi Fruit LcNAC1 Is a Target of LcMYC2 and regulator of fruit senescence through its interaction with LcWRKY1[J]. Plant & Cell Physiology, 2017, 58(6):1075-1089. [16] Mao X, Chen S, Li A, et al.Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis[J]. PLoS One, 2014, 9(1):e84359. [17] 余海霞, 罗聪, 徐趁, 等. 芒果转录因子NAC的克隆与表达模式分析[J]. 分子植物育种, 2016(1):38-44. [18] 陈希瑞. 转GmNAC4基因棉花的耐盐性研究[D]. 济南:山东大学, 2016. [19] 韩聚东. 梭梭NAC转录因子家族基因的克隆和HaNAC3基因的功能分析[D]. 乌鲁木齐:新疆农业大学, 2016. [20] 樊波, 孙鑫博, 张胤冰, 等. 结缕草ZjCCS基因的克隆与表达分析[J]. 草地学报, 2016, 24(2):239-245. [21] 罗莉琼, 吕波, 陈旭, 等. OsNAC2通过ABA依赖途径负调控水稻的多种非生物胁迫反应[J]. 复旦学报:自然科学版, 2016, 55(1):89-96. [22] 何建美, 吕波, 奚丹丹, 等. OsNAC2转录因子介导生长素代谢通路调节水稻早期根的发育[J]. 复旦学报:自然科学版, 2017, 56(4):411-420. [23] Fang L, Su L, Sun X, et al.Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis[J]. J Exp Bot, 2016, 67(9):2829-2845. [24] Mao H, Wang H, Liu S, et al.A transposable element in a NAC gene is associated with drought tolerance in maize seedlings[J]. Nature Communications, 2015, 6(8326):8326. [25] Chen N, Wu SH, Fu JL, et al.Overexpression of the eggplant(Solanum melongena)NAC family transcription factor SmNAC suppresses resistance to bacterial wilt[J]. Scientific Reports, 2016, 6:31568. [26] Chen YJ, Perera V, Christiansen MW, et al.The barley HvNAC6 transcription factor affects ABA accumulation and promotes basal resistance against powdery mildew[J]. Plant Mol Biol, 2013, 83(6):577. [27] Dalman K, Wind JJ, Nemesio GM, et al.Overexpression ofPa-NAC03, a stress induced NAC gene family transcription factor in Norway spruce leads to reduced flavonol biosynthesis and aberrant embryo development[J]. BMC Plant Biol, 2017, 17(1):6. [28] Wang F, Lin R, Feng J, et al.TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana[J]. Front Plant Sci, 2015, 6:108. [29] Xiao W, Yang Y, Yu J.ZmNST3, and ZmNST4, are master switches for secondary wall deposition in maize(Zea mays L.)[J]. Plant Sci, 2018, 266:83-94. [30] 王中娜, 商海红, 陈婷婷, 等. 亚洲棉(Gossypium arboreum L.)纤维次生壁加厚期NAC基因的鉴定与表达分析[J]. 棉花学报, 2016, 28(1):52-64. [31] Ishii T, Matsuoka K, Ono H, et al.Characterization of xylan in the early stages of secondary cell wall formation in tobacco bright yellow-2 cells[J]. Carbohydrate Polymers, 2017, 176:381-391. [32] 李会萍, 黎帮勇, 胡尚连, 等. 慈竹中2个NAC转录因子的克隆与分析[J]. 西北植物学报, 2017, 37(2):225-231. [33] Chi YH, Boyles Melencion SM, Alinapon CV, et al.The membrane-tethered NAC transcription factor, AtNTL7, contributes to ER-stress resistance in Arabidopsis[J]. Biochem Biophys Res Commun, 2017, 488(4):641-647. [34] 卢嘉宝, 李晓云, 刘旭, 等. 三个拟南芥NAC同源基因突变体的ABA响应及下游基因表达分析[J]. 生命科学研究, 2015, 19(2):114-118. [35] Shen J, Lv B, Luo L, et al.The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice[J]. Sci Rep, 2017, 7:40641. [36] Mao C, Lu S, Lv B, et al.A Rice NAC transcription factor promotes leaf senescence via ABA biosynthesis[J]. Plant Physiol, 2017, 174(3):1747. [37] Oda-Yamamizo C, Mitsuda N, Sakamoto S, et al.The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves[J]. Scientific Reports, 2016, 6:23609. [38] Lv Z, Wang S, Zhang F, et al.Overexpression of a novel NAC domain-containing transcription factor gene(AaNAC1)enhances the content of artemisinin and increases tolerance to drought and botrytis cinerea in Artemisia annua[J]. Plant Cell Physiol, 2016, 57(9):1961-1971. [39] He X, Qu B, Li W, et al.The nitrate-inducible NAC transcription factor TaNAC2-5A controls nitrate response and increases wheat yield[J]. Plant Physiol, 2015, 169(3):1991. |
[1] | ZHANG Man, ZHANG Ye-zhuo, HE Qi-zou-hong, E Yi-lan, LI Ye. Advances in Plant Cell Wall Structure and Imaging Technology [J]. Biotechnology Bulletin, 2023, 39(7): 113-122. |
[2] | CUI Xue-qiang, HUANG Chang-yan, DENG Jie-ling, LI Xian-min, LI Xiu-ling, ZHANG Zi-bin. SNP Markers Development and Genetic Relationship Analysis of Dendrobium Germplasms Using SLAF-seq Technology [J]. Biotechnology Bulletin, 2023, 39(6): 141-148. |
[3] | LI Tuo, LI Long-ping, QU Lei. Research Progress in the Structure of Tailed Bacteriophage and Its Receptors [J]. Biotechnology Bulletin, 2023, 39(6): 88-101. |
[4] | YANG Jun-zhao, ZHANG Xin-rui, ZHAO Guo-zhu, ZHENG Fei. Structure and Function Analysis of Novel GH5 Multi-domain Cellulase [J]. Biotechnology Bulletin, 2023, 39(4): 71-80. |
[5] | ZHOU Xi-wen, CHENG Ke, ZHU Hong-liang. Research Progress in the Approaches to in vivo RNA Secondary Structure Profiling in Plants [J]. Biotechnology Bulletin, 2023, 39(2): 51-62. |
[6] | FENG Ce-ting, JIANG Lyu, LIU Xing-ying, LUO Le, PAN Hui-tang, ZHANG Qi-xiang, YU Chao. Identification of the NAC Gene Family in Rosa persica and Response Analysis Under Drought Stress [J]. Biotechnology Bulletin, 2023, 39(11): 283-296. |
[7] | ZHANG Yu-juan, LI Dong-hua, GONG Hui-hui, CUI Xin-xiao, GAO Chun-hua, ZHANG Xiu-rong, YOU Jun, ZHAO Jun-sheng. Cloning and Salt-tolerance Analysis of NAC Transcription Factor SiNAC77 from Sesamum indicum L. [J]. Biotechnology Bulletin, 2023, 39(11): 308-317. |
[8] | SHI Cheng-long, WANG Xi-wu, LI An-qi, QIAN Sen-he, WANG Zhou, ZHAO Shi-guang, LIU Yan, XUE Zheng-lian. Effect of ε-Polylysine on the Cell Structure and Biofilm Formation of Cronobacter sakazakii [J]. Biotechnology Bulletin, 2022, 38(9): 147-157. |
[9] | LI Ying, LONG Chang-mei, JIANG Biao, HAN Li-zhen. Colonization on the Peanuts of Two Plant-growth Promoting Rhizobacteria Strains and Effects on the Bacterial Community Structure of Rhizosphere [J]. Biotechnology Bulletin, 2022, 38(9): 237-247. |
[10] | WANG Zi-ye, WANG Zhi-gang, YAN Ai-hua. Diversity of Soil Protist Community in the Rhizosphere of Morus alba L. at Different Tree Ages [J]. Biotechnology Bulletin, 2022, 38(8): 206-215. |
[11] | WANG Zi-yin, LIU Bing-ru, LI Zi-hao, ZHAO Xiao-yu. Characteristics of Soil Bacterial Community Structure in the Different Developmental Stages of Desert Grassland Caragana korshinskii Kom. Nebkhas [J]. Biotechnology Bulletin, 2022, 38(7): 205-214. |
[12] | WANG Xiao-fang, WAN Jin-xin, WEI Zhong, XU Yang-chun, SHEN Qi-rong. Succession of Microbial Communities During Livestock Manure Composting [J]. Biotechnology Bulletin, 2022, 38(5): 13-21. |
[13] | ZHOU Xiao-nan, XU Jin-qing, LEI Yu-qing, WANG Hai-qing. Development of SNP Markers in Medicago archiducis-nicolai Based on GBS-seq [J]. Biotechnology Bulletin, 2022, 38(4): 303-310. |
[14] | ZHANG Guo-ning, FENG Jing-xian, YANG Ying-bo, CHEN Wan-sheng, XIAO Ying. Application of Cyclodextrin Glucosyltransferase in the Glycosylation Modification of Natural Products [J]. Biotechnology Bulletin, 2022, 38(3): 246-255. |
[15] | ZHANG Ye-meng, ZHU Li-li, CHEN Zhi-guo. Identification and Expression Analysis of NHX Gene Family in Quinoa Under Salt Stress [J]. Biotechnology Bulletin, 2022, 38(12): 184-193. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 597
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||