Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (3): 10-16.doi: 10.13560/j.cnki.biotech.bull.1985.2015.04.002
Previous Articles Next Articles
Xu Yunru Li Yueying Pang Hongbo Zhang Yuxin Liu Yulian
Received:
2014-07-18
Online:
2015-03-16
Published:
2015-03-16
Xu Yunru, Li Yueying, Pang Hongbo, Zhang Yuxin, Liu Yulian. Progress on Study of CYC-like Genes During the Floral Development of Angiosperm[J]. Biotechnology Bulletin, 2015, 31(3): 10-16.
[1] Zhao D, Yu Q, Chen C, et al. Genetic control of reproductive meristems[M]// McManus MT, Veit B, eds. Meristematic tissues in plant growth and development. Sheffield:Sheffield Academic Press, 2001:89-142. [2] Soltis DE, Soltis PS, Albert VA, et al. Missing links:the genetic architecture of flowers and floral diversification[J]. Trends Plant Sci, 2002, 7(1):22-31. [3] Kaufmann K, Melzer S, Theissen G. MIKC-type MADS-domain proteins:Structural modularity, protein interactions and network evolution in land plants[J]. Gene, 2005, 347(2):183-198. [4] Doebley J. Genetics, development and plant evolution[J]. Curr Opin Genet Dev, 1993, 3(6):865-872. [5] Doebley J, Lukens L. Transcriptional regulators and the evolution of plant form[J]. Plant Cell, 1998, 10(7):1075-1082. [6] Luo D, Carpenter R, Vincent C, et al. Origin of floral asymmetry in Antirrhinum[J]. Nature, 1996, 383(6603):794-799. [7] Luo D, Carpenter R, Copsey L, et al. Control of organ asymmetry in flowers of Antirrhinum[J]. Cell, 1999, 99(4):367-376. [8] Cubas P, Lauter N, Doebley J, et al. The TCP domain:a motif found in proteins regulating plant growth and development[J]. Plant J, 1999, 18(2):215-222. [9] Feng XZ, Zhao Z, Tian ZX, et al. Control of petal shape and floral zygomorphy in Lotus japonicas[J]. Proc Natl Acad Sci USA, 2006, 103(13):4970-4975. [10] Busch A, Zachgo S. Flower symmetry evolution:towards understanding the abominable mystery of angiosperm radiation[J]. Bioessays, 2009, 31(11):1181-1190. [11] Hileman LC, Cubas P. An expanded evolutionary role for flower symmetry genes[J]. J Biol, 2009, 8(10):90. [12] Preston JC, Hileman LC. Developmental genetics of floral symmetry evolution[J]. Trends Plant Sci, 2009, 14(3):147-154. [13] Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize[J]. Nature, 1997, 386(6624):485-488. [14] Kosugi S, Ohanshi Y. PCF1 and PCF2 specifically bind to cis elements in the rice PROLIFERATING CELL NUCLEAR ANTIGEN gene[J]. Plant Cell, 1997, 9(9):1607-1619. [15] Cubas P. Floral zygomorphy, the recurring evolution of successful trait[J]. Bioessays, 2004, 26(11):1175-1184. [16] Martin-Trillo M, Cubas P. TCP genes:a family snapshot ten years later[J]. Trends Plant Sci, 2009, 15:31-39. [17] Cubas P. Role of TCP genes in the evolution of morphological characters in angiosperms[M]//Hawkins JA, Cronk QCB, Bateman RM, eds. Developmental genetics and plant evolution. London, Taylor and Francis:CRC Press, 2002:247-266. [18] Howarth DG, Donoghue MJ. Duplication in CYC-like genes from dipsacales correlates with floral form[J]. Int J Plant Sci, 2005, 166(3):357-370. [19] Howarth DG and Donoghue MJ. Phylogenetic analysis of the “ECE”(CYC/TB1)clade reveals duplications predating the core eudicots[J]. Proc Natl Acad Sci USA, 2006, 103(24):9101-9106. [20] Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes[J]. Science, 2000, 290(5494):1151-1155. [21] Navaud O, Dabos P, Carnus E, et al. TCP transcription factors predate the emergence of land plants[J]. J Mol Evol, 2007, 65(1):23-33. [22] Ohta T. Time for acquiring a new gene by duplication[J]. Proc Natl Acad Sci USA, 1988, 85(10):3509-3512. [23] Lynch M, Force A. The probability of duplicate gene preservation by subfunctionalization[J]. Genetics, 2000, 154(1):459-473. [24] Vandenbussche M, Theissen G, Van de Peer Y, et al. Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations[J]. Nucleic Acids Res, 2003, 31(15):4401-4409. [25] Taylor JS, Raes J. Duplication and divergence:the evolution of new genes and old ideas[J]. Annu Rev Genet, 2004, 38:615-643. [26] Vandenbussche M, Zethof J, Royaert S, et al. The duplicated B-class heterodimer model:whorl-specific effects and complex genetic interations in Petunia hybrid flower development[J]. Plant Cell, 2004, 16(3):741-754. [27] Moore RC, Purugganan MD. The evolutionary dynamics of plant duplicate genes[J]. Curr Opin Plant Biol, 2005, 8(2):122-128. [28] Carlson SE, Howarth DG, Donoghue MJ. Diversification of CYCLOIDEA-like genes in Dipsacaceae(Dipsacales):implications for the evolution of capitulum inflorescences[J]. BMC Evol Biol, 2011, 11:325. [29] Howarth DG, Martins T, Chimney E, et al. Diversification of CYCLOIDEA expression in the evolution of bilateral flower symmetry in Caprifoliaceae and Lonicera(Dipsacales)[J]. Ann Bot London, 2011, 107(9):1521-1532. [30] Mondragon-Palomino M, Trontin C. High time for a roll call:gene duplication and phylogenetic relationships of TCP-like genes in monocots[J]. Ann Bot London, 2011, 107(9):1533-1544. [31] T?htiharju S, Rijpkema AS, Vetterli A, et al. Evolution and diversification of the CYC/TB1 gene family in Asteraceae—a comparative study in gerbera(Mutisieae)and sunflower(Heliantheae)[J]. Mol Biol Evol, 2012, 29(4):1155-1166. [32] Citerne H, Le Guilloux M, Sannier J, et al. Combining phylogenetic and syntenic analyses for understanding the evolution of TCP ECE genes in eudicots[J]. PLoS One, 2013, 8(9):e74803. [33] Florian J, Guillaume C, Martine LG, et al. Specific duplication and dorsoventrally asymmetric expression patterns of cycloidea-like genes in zygomorphic species of ranunculaceae[J]. PLoS One, 2014, 9(4):e95727. [34] Endress PK. Evolution of floral symmetry[J]. Curr Opin Plant Biol, 2001, 4(1):86-91. [35] Endress PK. The immense diversity of floral monosymmetry and asymmetry across angiosperms[J]. Botan Rev, 2012, 78:345-397. [36] Citerne H, Jabbour F, Nadot S, et al. The evolution of floral symm-etry[M]// Kader JC, Delseny M, eds. Advances in Botanical Res-earch. United States:Academic Press Inc, 2010, 54:85-137. [37] Green AA, Kennaway R, Hanna AI, et al. Genetic control of organ shape and tissue polarity[J]. PLoS Biol, 2010, 8(11):e1000537. [38] Cui ML, Copsey L, Green AA et al. Quantitative control of organ shape by combinatorial gene activity[J]. PLoS Biol, 2010, 8(11):e1000538. [39] Broholm SK, Tahtiharju S, Laitinen RA, et al. A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera(Asteraceae)inflorescence[J]. Proc Natl Acad Sci USA, 2008, 105(26):9117-9122. [40] Chapman MA, Leebens-Mack JH, Burke JM. Positive selection and expression divergence following gene duplication in the sunflower CYCLOIDEA gene family[J]. Mol Biol Evol, 2008, 25(7):1260-1273. [41] Kim M, Cui ML, Cubas P, et al. Regulatory genes control a key morphological and ecological trait transferred between species[J]. Science, 2008, 322(5904):1116-1119. [42] Chapman MA, Tang SX, Draeger D, et al. Genetic analysis of floral symmetry in Van Gogh’s sunflowers reveals independent recruitment of CYCLOIDEA genes in the Asteraceae[J]. PLoS Genet, 2012, 8(3):e1002628. [43] Zhou XR, Wang YZ, Smith JF, et al. Altered expression patterns of TCP and MYB genes relating to the floral developmental transition from initial zygomorphy to actinomorphy in Bournea(Gesneriaceae)[J]. New Phytol, 2008, 178(3):532-543. [44] Gao Q, Tao JH, Yan D et al. Expression differentiation of CYC-like floral symmetry genes correlated with their protein sequence divergence in Chirita heterotricha(Gesneriaceae)[J]. Dev Genes Evol, 2008, 218(7):341-351. [45] Du ZY, Wang YZ. Significance of RT-PCR expression patterns of CYC-like genes in Oreocharis benthamii(Gesneriaceae)[J]. J S E, 2008, 46(1):23-31. [46] Song CF, Lin QB, Liang RH, et al. Expressions of ECE-CYC2 clade genes relating to abortion of both dorsal and ventral stamens in Opithandra(Gesneriaceae)[J]. BMC Evol Biol, 2009, 9:244. [47] Pang HB, Sun QW, He SZ, et al. Expression pattern of CYC-like genes relating to a dorsalized actinomorphic flower in Tengia(Gesneriaceae)[J]. J S E, 2010, 48(5):309-317. [48] Yang X, Pang HB, Liu BL, et al. Evolution of double positive autoregulatory feedback loops in CYCLOIDEA2 clade genes is associated with the origin of floral zygomorphy[J]. Plant Cell, 2012, 24(5):1834-1847. [49] Citerne HL, Luo D, Pennington RT, et al. A phylogenomic investig-ation of CYCLOIDEA-like TCP genes in the Leguminosae[J]. Plant Physiol, 2003, 131(3):1042-1053. [50] Wang Z, Luo YH, Li X, et al . Genetic control of floral zygomorphy in pea(Pisum sativum L. )[J]. Proc Natl Acad Sci USA, 2008, 105(30):10414-10419. [51] Xu SL, Luo YH, Cai ZG, et al. Functional diversity of CYCLOID-EA-like TCP genes in the control of zygomorphic flower develo-pment in Lotus japonicus[J]. J Interg Plant Biol, 2013, 55(3):221-231. [52] K?lsch A, Gleissberg S. Diversification of CYCLOIDEA-like TCP genes in the basal eudicot families Fumariaceae and Papaveraceae s. str[J]. Plant Biol, 2006, 8(5):680-687. [53] Damerval C, Guilloux ML, Jager M, et al. Diversity and evolution of CYCLOIDEA-Like TCP genes in relation to flower development in Papaveraceae[J]. Plant Physiol, 2007, 143(2):759-772. [54] Damerval C, Citerne H, Le Guilloux M, et al. Asymetric morphogenetic cues along the transverse plane:shift from dissymmetry to zygomorphy in the flower of Fumarioideae[J]. Am J Bot, 2013, 100(2):391-402. [55] Busch A, Zachgo S. Control of corolla monosymmetry in the Brassicaceae Iberis amara[J]. Proc Natl Acad Sci USA, 2007, 104(42):16714-16719. [56] Busch A, Horn S, Muhlhausen A, et al. Corolla monosymmetry:evolution of a morphological novelty in the Brassicaceae family[J]. Mol Biol Evol, 2012, 29(4):1241-1254. [57] Zhang WH, Kramer EM, Davis CC. Floral symmetry genes and the origin and maintenance of zygomorphy in a plant-pollinator mutualism[J]. Proc Natl Acad Sci USA, 2010, 107(14):6388-6393. [58] Zhang WH, Kramer EM, Davis CC. Similar genetic mechanisms underlie the parallel evolution of floral phenoltypes[J]. PLoS ONE, 2012, 7(4):e36033. [59] Zhang WH, Steinmann VW, Nikolov L. et al. Divergent genetic mechanisms underlie reversals to radial floral symmetry from diverse zygomorphic flowered ancestors[J]. Frontiers in Plant Science, 2013, 4(302):1-12. [60] Yuan Z, Gao S, Xue DW. RETARDED PALEA1 controls palea development and floral zygomorphy in rice[J]. Plant Physiol, 2009, 149(1):235-244. [61] Bartlett ME, Specht CD. Changes in expression pattern of the teosinte branched1-like genes in the Zingiberales provide a mechanism for evolutionary shifts in symmetry across the order[J]. Am J Bot, 2011, 98(2):227-243. [62] Preston JC, Hileman LC. Parallel evolution of TCP and B-class genes in Commelinaceae flower bilateral symmetry[J]. EvoDevo, 2012, 3:6. [63] Mondragon-Palomino M, Theissen G. Why are orchid flowers so diverse? reduction of evolutionary constraints by paralogues of class B floral homeotic genes[J]. Ann Bot, 2009, 104(3):583-594. [64] Hileman LC. Bilateral flower symmetry-how, when and why?[J]. Curr Opin Plant Biol, 2014, 17:146-152. [65] Costa MMR, Fox S, Hanna AI, et al. Evolution of regulatory interactions controlling floral asymmetry[J]. Development, 2005, 132(22):5093-5101. [66] Citerne HL, Pennington RT, Cronk QC. An apparent reversal in floral symmetry in the Legume Cadia is a homeotic transformation[J]. Proc Natl Acad Sci USA, 2006, 103(32):12017-12020. [67] Cubas P, Vincent C, Coen E. An epigennetic mutation responsible for natural variation in floral symmetry[J]. Nature, 1999, 401(6749):157-161. [68] Cubas P, Coen E, Zapater JM. Ancient asymmetries in the evolution of flowers[J]. Curr Biol, 2001, 11(13):1050-1052. [69] Koyama T, Sato F, Ohme-Takagi M. A role of TCP1 in the longitudinal elongation of leaves in Arabidopsis[J]. Biosci Biotechnol Biochem, 2010, 74(10):2145-2147. [70] Guo Z, Fujioka S, Blancaflor EB, et al. TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana[J]. Plant Cell, 2010, 22(4):1161-1173. [71] Aguilar-Martínez JA, Poza-Carrión C, Cubas P. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds[J]. Plant Cell, 2007, 19:458-472. [72] 李家洋. 植物花对称性发育研究的进展:从理论到应用的双重价值[J]. 分子植物育种, 2006, 4(6):751-752. [73] Carroll SB, Prud’Homme B, Gompel N. Regulating evolution[J]. Scientific American, 2008, 298(5):60-67. [74] Carroll SB. Endless forms:the evolution of gene regulation and morphological diversity[J]. Cell, 2000, 101(6):577-580. |
[1] | QU Ge, SUN Zhou-tong. Catalytic Promiscuity-driven Redesign of Enzyme Functions [J]. Biotechnology Bulletin, 2023, 39(4): 1-9. |
[2] | WANG Mu-qiang, CHEN Qi, MA Wei, LI Chun-xiu, OUYANG Peng-fei, XU Jian-he. Advances in the Application of Machine Learning Methods for Directed Evolution of Enzymes [J]. Biotechnology Bulletin, 2023, 39(4): 38-48. |
[3] | ZHU Ying-xuan, LI Ke-jing, HE Min, ZHENG Dao-qiong. Research Progress in the Exploring Genomic Variations Driven by Stress Factors Using the Yeast Model [J]. Biotechnology Bulletin, 2023, 39(11): 191-204. |
[4] | CHEN Quan-bing, CAO Wei-jie, LI Chun, LV Bo. Molecular Evolutionary Relationship and Protein Structure of Glycoside Hydrolases from GH79 Family [J]. Biotechnology Bulletin, 2023, 39(1): 104-114. |
[5] | LI Yi-dan, SHAN Xiao-hui. Gibberellin Metabolism Regulation and Green Revolution [J]. Biotechnology Bulletin, 2022, 38(2): 195-204. |
[6] | ZHANG Xue, TAN Yu-meng, JIANG Hai-xia, YANG Guang-yu. Directed Evolution of α-1,2-fucosyltransferase by a Single-cell Ultra-high-throughput Screening Method [J]. Biotechnology Bulletin, 2022, 38(1): 289-298. |
[7] | CHEN Chun, SU Ling-qia, XIA Wei, WU Jing. Improved the Thermostability of MTHase from Arthrobacter ramosus by Directed Evolution [J]. Biotechnology Bulletin, 2021, 37(3): 84-91. |
[8] | LIU Jia, WEI Jia-qi, LIU Yu-qin, SHI Ge-ge, GUO Jing. Research on Evolution of Gene Editing Technology Based on Patent Analysis and Social Network Analysis [J]. Biotechnology Bulletin, 2021, 37(12): 274-284. |
[9] | ZHENG Fang-fang, LIN Jun-sheng. Selection and Specificity of Nucleic Acid Aptamers for a Proliferation Inducing Ligand [J]. Biotechnology Bulletin, 2021, 37(10): 196-202. |
[10] | CHENG Sai-sai, GONG Xin, XUE Wen-feng, WAN Bing-bing, LIU Man-qiang, HU Feng. Plant-Microbiome Interactions:An Eco-Evolutionary Perspective [J]. Biotechnology Bulletin, 2020, 36(9): 3-13. |
[11] | YUHAN Jie-yu, ZHU Li-ye, CHEN Xu, HE Xiao-yun, XU Wen-tao. Screening and Evaluation Strategies of Cell-specific Nucleic Acid Aptamers [J]. Biotechnology Bulletin, 2020, 36(7): 235-244. |
[12] | GUO Yan-xiu, CHEN Jing, WANG Yan-fang, SUN Chun-yu, WANG Yi, ZHANG Mei-ping. Roles of Dof Transcription Factors in the Regulation of Plant [J]. Biotechnology Bulletin, 2019, 35(5): 146-156. |
[13] | CHEN Xue-lian, JIANG Gao-fei, ZHONG Zeng-tao. Research Progress of Horizontal Gene Transfer in Rhizobia Evolution [J]. Biotechnology Bulletin, 2019, 35(10): 18-24. |
[14] | LIU Li-li, ZHU Hua, YAN Yan-chun, WANG Xiao-wen, ZHANG Rong, ZHU Jian-ya. Research Progress of Cold Tolerance Mechanism and Functional Genes in Fish [J]. Biotechnology Bulletin, 2018, 34(8): 50-57. |
[15] | GUO Xue-wu, ZHANG Yu, GUAN Xiang-yu, NI Xiao-feng, WANG Qing, CHEN Ye-fu, XIAO Dong-guang. Transcriptomics Analysis of High-xylose-tolerance Klebsiella pneumonia Strain and Optimization of Fermentation Conditions for 2,3-butanediol Production [J]. Biotechnology Bulletin, 2018, 34(8): 159-169. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||