[1] 潘伯荣, 葛学军. 我国沙冬青属植物保护生物学研究和保护实践的回顾与展望[A]. 中国生物多样性保护与研究进展VI—第六届全国生物多样性保护与持续利用研究会论文集(2004). 北京:气象出版社, 2005:373-392. [2] Zhou YJ, Gao F, Liu R, et al. De novo sequencing and analysis of root transcriptome using 454 pyrosequencing to discover putative genes associated with drought tolerance in Ammopiptanthus mongolicus[J]. BMC Genomics, 2012, 13:266. [3] Pang T, Ye CY, Xia X, et al. De novo sequencing and transcriptome analysis of the desert shrub, Ammopiptanthus mongolicus, during cold acclimation using Illumina/Solexa[J]. BMC Genomics, 2013, 14(1):488. [4] Guo H, Li Z, Zhou M, et al. cDNA-AFLP analysis reveals heat shock proteins play important roles in mediating cold, heat, and drought tolerance in Ammopiptanthus mongolicus[J]. Funct Integr Genomics, 2014, 14(1):127-133. [5] Wei Q, Kuai BK, Hu P, et al. Ectopic expression of an Ammopiptan-thus mongolicus H+-pyrophosphatase gene enhances drought and salt tolerance in Arabidopsis[J]. Plant Cell Tiss Organ Cult, 2012, 110:359-369. [6] Deng LQ, Yu HQ, Liu YP, et al. Heterologous expression of antifreeze protein gene AnAFP from Ammopiptanthus nanus enhances cold tolerance in Escherichia coli and tobacco[J]. Gene, 2014, 539(1):132-140. [7] 李科友, 朱海兰. 植物非生物逆境胁迫DREB/CBF转录因子的研究进展[J]. 林业科学, 2011, 47(1):124-134. [8] Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AP2 /ERF family transcription factors in plant abiotic stress responses[J]. Biochim Biophys Acta, 2012, 1819:86-96. [9] Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression, respectively, in Arabidopsis[J]. Plant Cell, 1998, 10:391-406. [10] Wang Q, Guan Y, Wu Y, et al. Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice[J]. Plant Mol Biol, 2008, 67:589-602. [11] Qin F, Kakimoto M, Sakuma Y. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. [J]. Plant J, 2007, 50:54-69. [12] 耿芳, 郭伟华, 郭玉双, 等. 烟草DREB转录因子新基因的克隆与功能分析[J]. 浙江大学学报:农业与生命科学版, 2011, 37(1):22-30. [13] Xu ZS, Chen M, Li LC, et al. Functions and application of the AP2 /ERF transcription factor family in crop improvement[J]. J Integr Plant Biol, 2011, 53(7):570-585. [14] 陈静, 高飞, 周宜君, 等. 改良Trizol法提取蒙古沙冬青总RNA[J]. 生物技术通报, 2013(10):87-92. [15] 杨杞, 白肖飞, 高阳, 等. 沙冬青CBF/DREB1转录因子cDNA的克隆及序列分析[J]. 基因组学与应用生物学, 2009, 28(6):1043-1048. [16] 张锋, 王学峰, 董博, 等. 沙冬青AmDREB3基因的克隆及植物表达载体构建[J]. 内蒙古农业大学学报, 2012(33):5-6. [17] Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain containing transcription activator that binds to the C-repeat /DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proc Natl Acad Sci USA, 1997, 94:1035-1040. [18] Lata C, Prasad M. Role of DREBs in regulation of abiotic stress responses in plants[J]. J Exp Bot, 2011, 62(14):4731-4748. [19] Li XP, Tian AG, Luo GZ, et al. Soybean DRE-binding transcription factors that are responsive to abiotic stresses[J]. Theor Appl Genet, 2005, 110(8):1355-1362. [20] Srivastav A, Mehta S, Lindlof A, et al. Over-represented promoter motifs in abiotic stress-induced DREB genes of rice and sorghum and their probable role in regulation of gene expression[J]. Plant Signal Behav, 2010, 5(7):775-784. |