Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (3): 17-24.doi: 10.13560/j.cnki.biotech.bull.1985.2015.04.003
Previous Articles Next Articles
Li Fangfang1 Tao Shutian1 Zhang Huping1,2
Received:
2014-07-29
Online:
2015-03-16
Published:
2015-03-16
Li Fangfang, Tao Shutian, Zhang Huping. Research Advance on the Biosynthesis of Volatile Organic Compounds in Plant[J]. Biotechnology Bulletin, 2015, 31(3): 17-24.
[1] Knudsen JT, Eriksson R, Gershenzon J, et al. Diversity and distribution of floral scent[J]. Botanical Review, 2006, 72:1-120. [2] Raguso RA. Wake up and smell the roses:the ecology and evolution of floral scent[J]. Annual Review of Ecology, Evolution, and Systematics, 2008, 39:549-569. [3] Hiltpold I, Turlings TCJ. Manipulation of chemically mediated interactions in agricultural soils to enhance the control of crop pests and to improve crop yield[J]. Journal of Chemical Ecology, 2012, 38:641-650. [4] Huang M, Sanchez-moreiras AM, Abel C, et al. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene(E)-b-caryophyllene, is a defense against a bacterial pathogen[J]. New Phytologist, 2012, 193:997-1008. [5] Heil M, Karban R. Explaining evolution of plant communication by airborne signals[J]. Trends in Ecology & Evolution, 2010, 25(3):137-144. [6] Husain Q. Handbook of fruit and vegetable flavours[M]. New Jersey:John Wiley & Sons, Inc, 2010. [7] 宋秀华, 李传荣, 许景伟, 王超. 元宝枫叶片挥发物成分及其季节差异[J]. 园艺学报, 2014, 41(5):915-924. [8] Dudareva N, Klempien A, Muhlemann JK, et al. Biosynthesis, function and metabolic engineering of plant volatile organic compounds[J]. New Phytologist, 2013, 198(1):16-32. [9] Mc Garvey DJ, Croteau R. Terpenoid metabolism[J]. Plant Cell, 1995, 7:1015-1026. [10] Hsieh MH, Chang CY, Hsu SJ, et al. Chloroplast localization of methylerythritol 4-phosphate pathway enzymes and regulation of mitochondrial genes in IspD and IspE albino mutants in Arabidopsis[J]. Plant Molecular Biology, 2008, 66:663-673. [11] Pulido P, Perello C, Rodriguez-concepcion M. New insights into plant isoprenoid metabolism[J]. Molecular Plant, 2012, 5:964-967. [12] Lange BM, Rujan T, Martin W, et al. Isoprenoid biosynthesis:the evolution of two ancient and distinct pathways across genomes[J]. Proceedings of the National Academy of Sciences, USA, 2000, 97:13172-13177. [13] Oliver DJ, Nikolau BJ, Wurtele ES. Acetyl-CoA life at the metabolic nexus[J]. Plant Science, 2009, 176:597-601. [14] Ahumada I, Cairo A, Hemmerlin A, et al. Characterisation of the gene family encoding acetoacetyl-CoA thiolase in Arabidopsis[J]. Functional Plant Biology, 2008, 35:1100-1111. [15] Andriotis VM, Kruger NJ, Pike MJ, et al. Plastidial glycolysis in developing Arabidopsis embryos[J]. New Phytologist, 2010, 185:649-662. [16] Joyard J, Ferro M, Masselon C, et al. Chloroplast proteomics highli-ghts the subcellular compartmentation of lipid metabolism[J]. Progress in Lipid Research, 2010, 49:128-158. [17] Bayer RG, Stael S, Csaszar E, et al. Mining the soluble chloroplast proteome by affinity chromatography[J]. Proteomics, 2011, 11:1287-1299. [18] Wise ML, Croteau R. Monoterpene biosynthesis[M]//Cane DD, ed. Comprehensive natural products chemistry:isoprenoids including carotenoids and steroids. Amsterdam, the Netherlands:Elsevier, 1999:97-153. [19] Nakamura A, Shimada H, Masuda T, et al. Two distinct isopentenyl diphosphate isomerases in cytosol and plastid are differentially induced by environmental stresses in tobacco[J]. FEBS Letters, 2001, 506:61-64. [20] Guirimand G, Guihur A, Phillips MA, et al. A single gene encodes isopentenyl diphosphate isomerase isoforms targeted to plastids, mitochondria and peroxisomes in Catharanthus roseus[J]. Plant Molecular Biology, 2012, 79:443-459. [21] Hemmerlin A, Hoeffler JF, Meyer O, et al. Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells[J]. Journal of Biological Chemistry, 2003, 278:26666-26676. [22] Laule O, Furholz A, Chang HS, et al. Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences, USA, 2003, 100:6866-6871. [23] Dudareva N, Andersson S, Orlova I, et al. The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers[J]. Proceedings of the National Academy of Sciences, USA, 2005, 102:933-938. [24] Hampel D, Mosandl A, Wüst M. Biosynthesis of mono- and sesquiterpenes in carrot roots and leaves(Daucus carota L. ):metabolic cross talk of cytosolic mevalonate and plastidial methylerythritol phosphate pathways[J]. Phytochemistry, 2005, 66:305-311. [25] Degenhardt J, K?llner TG, Gershenzon J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants[J]. Phytochemistry, 2009, 70:1621-1637. [26] Tholl D, Chen F, Petri J, et al. Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers[J]. Plant Journal, 2005, 42:757-771. [27] Gutensohn M, Nagegowda DA, Dudareva N. Involvement of compartmentalization in monoterpene and sesquiterpene biosynthesis in plants[M]//Bach TJ, Rohmer M, eds. Isoprenoid synthesis in plants and microorganisms. New York, NY, USA:Springer, 2013:155-169. [28] Sallaud C, Rontein D, Onillon S, et al. A novel pathway for sesquiterpene biosynthesis from Z, Z-farnesyl pyrophosphate in the wild tomato Solanum habrochaites[J]. Plant Cell, 2009, 21:301-317. [29] Bohlmann J, Meyer-gauen G, Croteau R. Plant terpenoid synthases:molecular biology and phylogenetic analysis[J]. Proceedings of the National Academy of Sciences USA, 1998, 95:4126-4133. [30] Eduardo I, Chietera G, Pirona R, et al. Genetic dissection of aroma volatile compounds from the essential oil of peach fruit:QTL analysis and identification of candidate genes using dense SNP maps[J]. Tree Genetics & Genomes, 2013, 1:189-204. [31] Winterhalter P, Rouseff R. Carotenoid-derived aroma compounds:an introduction[M]//Winterhalter P, Rouseff R, eds. Carotenoid-derived aroma compounds[J]. Washington, DC, USA:American Chemical Society, 2001:1-17. [32] Simkin AJ, Schwartz SH, Auldridge M, et al. The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles b-ionone, pseudoionone, and geranylacetone[J]. Plant Journal, 2004, 40:882-892. [33] Ibdah M, Azulay Y, Portnoy V, et al. Functional characterization of CmCCD1, a carotenoid cleavage dioxygenase from melon[J]. Phytochemistry, 2006, 67:1579-1589. [34] Maeda H, Dudareva N. The shikimate pathway and aromatic amino acid biosynthesis in plants[J]. Annual Review of Plant Biology, 2012, 63:73-105. [35] Tzin V, Malitsky S, Ben Zvimm, et al. Expression of a bacterial feedback-insensitive 3-deoxy-d-arabino-heptulosonate7-phosphate synthase of the shikimate pathway in arabidopsis elucidates potential metabolic bottlenecks between primary and secondary metabolism[J]. New Phytologist, 2012, 194:430-439. [36] Van Moerkercke A, Schauvinhold I, Pichersky E, et al. A plant thiolase involved in benzoic acid biosynthesis and volatile benzenoid production[J]. Plant Journal, 2009, 60:292-302. [37] Long MC, Nagegowda DA, Kaminaga Y, et al. Involvement of snapdragon benzaldehyde dehydrogenase in benzoic acid biosynthesis[J]. Plant Journal, 2009, 59:256-265. [38] D’auria JC. Acyltransferases in plants:a good time to be BAHD[J]. Current Opinion In Plant Biology, 2006, 9:331-340. [39] D’auria JC, Pichersky E, Schaub A, et al. Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile(Z)-3-hexen-1-ylacetate in Arabidopsis thaliana[J]. Plant Journal, 2007, 49:194-207. [40] Koeduka T, Fridman E, Gang DR, et al. Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester[J]. Proceedings of the National Academy of Sciences USA, 2006, 103:10128-10133. [41] Dexter R, Qualley A, Kish CM, et al. Characterization of a petunia acetyltransferase involved in the biosynthesis of the floral volatile isoeugenol[J]. Plant Journal, 2007, 49:265-275. [42] Koeduka T, Louie GV, Orlova I, et al. The multiple phenylpropene synthases in both Clarkia breweri and Petunia hybrida represent two distinct protein lineages[J]. Plant Journal, 2008, 54:362-374. [43] Vassao DG, Gang DR, Koeduka T, et al. Chavicol formation in sweet basil(Ocimum basilicum):cleavage of an esterified C9 hydroxyl group with NAD(P)H-dependent reduction[J]. Organic and Biomolecular Chemistry, 2007, 4:2733-2744. [44] Gang DR, Lavid N, Zubieta C, et al. Characterization of phenylpropene O-methyltransferases from sweet basil:facile change of substrate specificity and convergent evolution within a plant O-methyltransferase family[J]. Plant Cell, 2002, 14:505-519. [45] Kaminaga Y, Schnepp J, Peel G, et al. Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxy lationan doxidation[J]. Journal of Biological Chemistry, 2006, 281:23357-23366. [46] Tieman DM, Loucas HM, Kim JY, et al. Tomato phenylacetaldehyde reductases catalyze the last step in the synthesis of the aroma volatile 2-phenylethanol[J]. Phytochemistry, 2007, 68:2660-2669. [47] Farhi M, Lavie O, Masci T, et al. Identification of rose phenylacetaldehyde synthase by functional complementation in yeast[J]. Plant Molecular Biology, 2010, 72:235-245. [48] Tieman DM, Taylor MG, Schauer N, et al. Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde[J]. Proceedings of the National Academy of Sciences, USA, 2006, 103:8287-8292. [49] Gonda I, Bar E, Portnoy V, et al. Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit[J]. Journal of Experimental Botany, 2010, 61:1111-1123. [50] Feussner I, Wasternack C. The lipoxygenase pathway[J]. Annual Review of Plant Biology, 2002, 53:275-297. [51] Chen G, Hackett R, Walker D, et al. Identification of a specific isoform of tomato lipoxygenase(TomloxC)involved in the generation of fatty acid-derived flavor compounds[J]. Plant Physiology, 2004, 136(1):2641-2651. [52] Zhang B, Chen K, Bowen J, et al. Differential expression within the LOX gene family in ripening kiwifruit[J]. Journal of Experimental Botany, 2006, 57(14):3825-3836. [53] Song M, Kim D, Lee S. Isolation and characterization of a jasmonic acid carboxyl methyltransferase gene from hot pepper(Capsicum annuum L. )[J]. Journal of Plant Biology, 2005, 48:292-297. [54] 秦改花. 梨果实挥发性芳香物质的分析和生物合成研究[D]. 南京:南京农业大学, 2012. [55] Wu J, Wang ZW, Shi ZB, et al. The genome of pear(Pyrus bretschneideri Rehd. )[J]. Genome Research, 2013, 23(2):396-408. [56] Dickinson JR, Harrison SJ, Dickinson JA, et al. An investigation of the metabolism of isoleucine to active amyl alcohol in Saccharomyces cerevisiae[J]. Journal of Biological Chemistry, 2000, 275:10937-10942. [57] Beekwilder J, Alvarez-huerta M, Neef E, et al. Functional characterization of enzymes forming volatile esters from strawberry and banana[J]. Plant Physiology, 2004, 135:1865-1878. |
[1] | ZHAN Yan, ZHOU Li-bin, JIN Wen-jie, DU Yan, YU Li-xia, QU Ying, MA Yong-gui, LIU Rui-yuan. Research Progress in Plant Leaf Color Mutation Induced by Radiation [J]. Biotechnology Bulletin, 2023, 39(8): 106-113. |
[2] | WANG Bao-bao, WANG Hai-yang. Molecular Design of Ideal Plant Architecture for High-density Tolerance of Maize Plant [J]. Biotechnology Bulletin, 2023, 39(8): 11-30. |
[3] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[4] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[5] | LIU Bao-cai, CHEN Jing-ying, ZHANG Wu-jun, HUANG Ying-zhen, ZHAO Yun-qing, LIU Jian-chao, WEI Zhi-cheng. Characteristics Analysis of Seed Microrhizome Gene Expression of Polygonatum cyrtonema [J]. Biotechnology Bulletin, 2023, 39(8): 220-233. |
[6] | SHI Jia-xin, LIU Kai, ZHU Jin-jie, QI Xian-tao, XIE Chuan-xiao, LIU Chang-lin. Gene Editing Reshaping Maize Plant Type for Increasing Hybrid Yield [J]. Biotechnology Bulletin, 2023, 39(8): 62-69. |
[7] | ZHANG Yong, XU Tian-jun, LYU Tian-fang, XING Jin-feng, LIU Hong-wei, CAI Wan-tao, LIU Yue-e, ZHAO Jiu-ran, WANG Rong-huan. Effects of Planting Density on the Stem Quality and Root Phenotypic Characters of Summer Sowing Maize [J]. Biotechnology Bulletin, 2023, 39(8): 70-79. |
[8] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[9] | YE Yun-fang, TIAN Qing-yin, SHI Ting-ting, WANG Liang, YUE Yuan-zheng, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Biosynthesis and Regulation of β-ionone in Plants [J]. Biotechnology Bulletin, 2023, 39(8): 91-105. |
[10] | ZHANG Man, ZHANG Ye-zhuo, HE Qi-zou-hong, E Yi-lan, LI Ye. Advances in Plant Cell Wall Structure and Imaging Technology [J]. Biotechnology Bulletin, 2023, 39(7): 113-122. |
[11] | SUN Ming-hui, WU Qiong, LIU Dan-dan, JIAO Xiao-yu, WANG Wen-jie. Cloning and Expression Analysis of CsTMFs Gene in Tea Plant [J]. Biotechnology Bulletin, 2023, 39(7): 151-159. |
[12] | XU Jian-xia, DING Yan-qing, FENG Zhou, CAO Ning, CHENG Bin, GAO Xu, ZOU Gui-hua, ZHANG Li-yi. QTL Mapping of Sorghum Plant Height and Internode Numbers Based on Super-GBS Technique [J]. Biotechnology Bulletin, 2023, 39(7): 185-194. |
[13] | WANG Ling, ZHUO Shen, FU Xue-sen, LIU Zi-xuan, LIU Xiao-rong, WANG Zhi-hui, ZHOU Ri-bao, LIU Xiang-dan. Advances in the Biosynthetic Pathways and Related Genes of Lotus Alkaloids [J]. Biotechnology Bulletin, 2023, 39(7): 56-66. |
[14] | LI Yu-ling, MAO Xin, ZHANG Yuan-shuai, DONG Yuan-fu, LIU Cui-lan, DUAN Chun-hua, MAO Xiu-hong. Applications and Perspectives of Radiation Mutagenesis in Woody Plant Breeding [J]. Biotechnology Bulletin, 2023, 39(6): 12-30. |
[15] | YANG Yang, ZHU Jin-cheng, LOU Hui, HAN Ze-gang, ZHANG Wei. Transcriptome Analysis of Interaction Between Gossypium barbadense and Fusarium oxysporum f. sp. vasinfectum [J]. Biotechnology Bulletin, 2023, 39(6): 259-273. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||