Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (4): 65-71.doi: 10.13560/j.cnki.biotech.bull.1985.2015.03.002
• Review • Previous Articles Next Articles
Zhang Peng
Received:
2015-01-04
Online:
2015-04-22
Published:
2015-04-22
Zhang Peng. Trends and Prospect of Basic Research on Root and Tuber Crops #br#in China[J]. Biotechnology Bulletin, 2015, 31(4): 65-71.
[1] FAO(2014)FAOSTAT[DB]. http://faostat3. fao. org. [2] Liu Q, Liu J, Zhang P, et al. Root and tuber crops[M]// Van Alfen N, Encyclopedia of Agriculture and Food Systems. San Diego:Elsevier, 2014, 5:46-61. [3] Zhang ZF, Lu J, Zheng YL, et al. Purple sweet potato color attenuates hepatic insulin resistance via blocking oxidative stress and endoplasmic reticulum stress in high-fat-diet-treated mice[J]. The Journal of Nutritional Biochemistry, 2013, 24(6):1008-1018. [4] Shan Q, Zheng Y, Lu J, et al. Purple sweet potato color ameliorates kidney damage via inhibiting oxidative stress mediated NLRP3 inflammasome activation in high fat diet mice[J]. Food and Chemical Toxicology, 2014, 69:339-346. [5] 张鹏, 杨俊, 周文智, 等. 能源木薯高淀粉抗逆分子育种研究进展与展望[J]. 生命科学, 2014, 26(5):465-473. [6] Liu J, Zheng Q, Ma Q, et al. Cassava genetic transformation and its application in breeding[J]. Journal of Integrative Plant Biology, 2011, 53(7):552-569. [7] 张鹏, 安冬, 马秋香, 等. 木薯分子育种中若干基本科学问题的思考与研究进展[J]. 中国科学:生命科学, 2013, 43(12):1082-1089. [8] 杨俊, 张敏, 张鹏. 甘薯遗传转化及其在分子育种中的应用[J]. 植物生理学报, 2011, 47(5):427-436. [9] Sayre R, Beeching J, Cahoon E, et al. The BioCassava plus program:biofortification of cassava for sub-Saharan Africa[J]. Annual Review of Plant Biology, 2011, 62:251-272. [10] RTB. Expanding collaboration, catalyzing innovation-RTB annual report 2013[R]. Lima(Peru). CGIAR Research Program on Roots, Tubers and Bananas(RTB), 2014. Available online at:www. rtb. cgiar. org [11] The Potato Genome Sequencing Consortium. Genome sequence and analysis of the tuber crop potato[J]. Nature, 2011, 475(7355):189-195. [12] Zhang N, Yang J, Wang Z, et al. Identification of novel and conserved MicroRNAs related to drought stress in potato by deep sequencing[J]. PLoS One, 2014, 9(4):e95489. [13] Zhang N, Liu B, Ma C, et al. Transcriptome characterization and sequencing-based identification of drought-responsive genes in potato[J]. Molecular Biology Reports, 2014, 41(1):505-517. [14] Wang W, Feng B, Xiao J, et al. Cassava genome from a wild ancestor to cultivated varieties[J]. Nature Communications, 2014, 5:5110. [15] Xia J, Zeng C, Chen Z, et al. Endogenous small-noncoding RNAs and their roles in chilling response and stress acclimation in cassava[J]. BMC Genomics, 2014, 15(1):634. [16] Zeng C, Chen Z, Xia J, et al. Chilling acclimation provides immunity to stress by altering regulatory networks and inducing genes with protective functions in Cassava[J]. BMC Plant Biology, 2014, 14(1):207. [17] Xia Z, Zou M, Zhang S, et al. AFSM sequencing approach:a simple and rapid method for genome-wide SNP and methylation site discovery and genetic mapping[J]. Sci Rep, 2014, 4:7300. [18] Li K, Zhu W, Zeng K, et al. Proteome characterization of cassava(Manihot esculenta Crantz)somatic embryos, plantlets and tuberous roots[J]. Proteome Science, 2010, 8(1):10. [19] An F, Fan J, Li J, et al. Comparison of leaf proteomes of cassava(Manihot esculenta Crantz)cultivar NZ199 diploid and autotetraploid genotypes[J]. PLoS One, 2014, 9(4):e85991. [20] Tao X, Gu YH, Wang HY, et al. Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato[Ipomoea batatas(L. )Lam. ][J]. PLoS One, 2012, 7(4):e36234. [21] Yan L, Gu YH, Tao X, et al. Scanning of transposable elements and analyzing expression of transposase genes of sweet potato(Ipomoea batatas)[J]. PLoS One, 2014, 9(3):e90895. [22] Gu YH, Tao X, Lai XJ, et al. Exploring the polyadenylated RNA virome of sweet potato through high-throughput sequencing[J]. PLoS One, 2014, 9(6):e98884. [23] Liu D, He S, Zhai H, et al. Overexpression of IbP5CR enhances salt tolerance in transgenic sweetpotato[J]. Plant Cell, Tissue and Organ Culture, 2014, 117(1):1-16. [24] Liu D, Wang L, Zhai H, et al. A novel α/β-hydrolase gene IbMas enhances salt tolerance in transgenic sweetpotato[J]. PLoS One, 2014, 9(12):e115128. [25] Liu D, Wang L, Liu C, et al. An Ipomoea batatas iron-sulfur cluster scaffold protein gene, IbNFU1, is involved in salt tolerance[J]. PLoS One, 2014, 9(4):e93935. [26] Fan W, Zhang M, Zhang H, et al. Improved tolerance to various abiotic stresses in transgenic sweet potato(Ipomoea batatas)expressing spinach betaine aldehyde dehydrogenase[J]. PLoS One, 2012, 7(5):e37344. [27] Fan W, Deng G, Wang H, et al. Elevated compartmentalization of Na+ into vacuoles improves salt and cold stress tolerance in sweet potato(Ipomoea batatas)[J]. Physiologia Plantarum, 2014. DOI:10.1111/ppL.12301 [28] Wang H, Fan W, Li H, et al. Functional characterization of dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweet potato underlies the direct evidence of anthocyanins function against abiotic stresses[J]. PLoS One, 2013, 8(11):e78484. [29] Zhao SS, Dufour D, Sánchez T, et al. Development of waxy cassava with different Biological and physico-chemical characteristics of starches for industrial applications[J]. Biotechnology and Bioengineering, 2011, 108(8):1925-1935. [30] Rolland-Sabaté A, Sanchez T, Buléon A, et al. Molecular and supra-molecular structure of waxy starches developed from cassava(Manihot esculenta Crantz)[J]. Carbohydrate Polymers, 2013, 92(2):1451-1462. [31] Xu J, Yang J, Duan X, et al. Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava(Manihot esculenta Crantz)[J]. BMC Plant Biology, 2014, 14(1):208. [32] Xu J, Duan X, Yang J, et al. Coupled expression of Cu/Zn-superoxide dismutase and catalase in cassava improves tolerance against cold and drought stresses[J]. Plant Signaling & Behavior, 2013, 8(6):e24525. [33] Liu X, Zhang C, Ou Y, et al. Systematic analysis of potato acid invertase genes reveals that a cold-responsive member, StvacINV1, regulates cold-induced sweetening of tubers[J]. Molecular Genetics and Genomics, 2011, 286(2):109-118. [34] Liu X, Lin Y, Liu J, et al. StInvInh2 as an inhibitor of StvacINV1 regulates the cold-induced sweetening of potato tubers by specifically capping vacuolar invertase activity[J]. Plant Biotechnology Journal, 2013, 11(5):640-647. [35] Liu X, Cheng S, Liu J, et al. The potato protease inhibitor gene, St-Inh, plays roles in the cold-induced sweetening of potato tubers by modulating invertase activity[J]. Postharvest Biology and Technology, 2013b, 86:265-271. [36] Zhang H, Liu J, Hou J, et al. The potato amylase inhibitor gene SbAI regulates cold-induced sweetening in potato tubers by modulating amylase activity[J]. Plant Biotechnology Journal, 2014, 12(7):984-993. [37] Yang J, An D, Zhang P. Expression profiling of cassava storage roots reveals an active process of glycolysis/gluconeogenesis[J]. Journal Integrative Plant Biology, 2011, 53(3):193-211. [38] Liu B, Zhang N, Zhao S, et al. Proteomic changes during tuber dormancy release process revealed by iTRAQ quantitative proteomics in potato[J]. Plant Physiology and Biochemistry, 2015, 86:181. [39] Liu B, Zhang N, Wen Y, et al. Identification of differentially expre-ssed genes in potato associated with tuber dormancy release[J]. Mol Biol Rep, 2012, 39(12):11277-11287. [40] Wang Z, Fang B, Chen J, et al. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato(Ipomoea batatas)[J]. BMC Genomics, 2010, 11(1):726. [41] Wang Z, Li J, Luo Z, et al. Characterization and development of EST-derived SSR markers in cultivated sweetpotato(Ipomoea batatas)[J]. BMC Plant Biology, 2011, 11(1):139. [42] 赵姗姗, 杨俊, 周文智, 等. 薯类植物中的淀粉生物合成及关键酶[J]. 植物学研究, 2013, 2(1):24-33. [43] Zhou W, Yang J, Hong Y, et al. Impact of amylose content on starch physicochemical properties in transgenic sweet potato[J]. Carbohydrate Polymers, 2014, (online First)doi:10. 1016/j. carbpol. 2014. 11. 003 [44] 马秋香, 许佳, 乔爱民, 等. 木薯储藏根采后生理性变质研究进展[J]. 热带亚热带植物学报, 2009, 17(3):309-314. [45] Xu J, Duan XG, Yang J, et al. Enhanced reactive oxygen species scavenging by over-production of superoxide dismutase and catalase delays post-harvest physiological deterioration of cassava storage roots[J]. Plant Physiology, 2013, 161(3):1517-1528. |
[1] | LIU Wen-jin, MA Rui, LIU Sheng-yan, YANG Jiang-wei, ZHANG Ning, SI Huai-jun. Cloning of StCIPK11 Gene and Analysis of Its Response to Drought Stress in Solanum tuberosum [J]. Biotechnology Bulletin, 2023, 39(9): 147-155. |
[2] | ZHAN Yan, ZHOU Li-bin, JIN Wen-jie, DU Yan, YU Li-xia, QU Ying, MA Yong-gui, LIU Rui-yuan. Research Progress in Plant Leaf Color Mutation Induced by Radiation [J]. Biotechnology Bulletin, 2023, 39(8): 106-113. |
[3] | XU Jing, ZHU Hong-lin, LIN Yan-hui, TANG Li-qiong, TANG Qing-jie, WANG Xiao-ning. Cloning of IbHQT1 Promoter and Identification of Upstream Regulatory Factors in Sweet Potato [J]. Biotechnology Bulletin, 2023, 39(8): 213-219. |
[4] | ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding [J]. Biotechnology Bulletin, 2023, 39(8): 31-42. |
[5] | LENG Yan, MA Xiao-wei, CHEN Guang, REN He, LI Xiang. High-yield Contests in Maize Facilitate the Vitalization of China’s Seed Industry [J]. Biotechnology Bulletin, 2023, 39(8): 4-10. |
[6] | WANG Tian-yi, WANG Rong-huan, WANG Xia-qing, ZHANG Ru-yang, XU Rui-bin, JIAO Yan-yan, SUN Xuan, WANG Ji-dong, SONG Wei, ZHAO Jiu-ran. Research in Maize Dwarf Genes and Dwarf Breeding [J]. Biotechnology Bulletin, 2023, 39(8): 43-51. |
[7] | LI Yu-ling, MAO Xin, ZHANG Yuan-shuai, DONG Yuan-fu, LIU Cui-lan, DUAN Chun-hua, MAO Xiu-hong. Applications and Perspectives of Radiation Mutagenesis in Woody Plant Breeding [J]. Biotechnology Bulletin, 2023, 39(6): 12-30. |
[8] | ZHU Shao-xi, JIN Zhao-yang, GE Jian-rong, WANG Rui, WANG Feng-ge, LU Yun-cai. High-throughput Specific Detection Methods for Transgenic Maize Based on the KASP Platform [J]. Biotechnology Bulletin, 2023, 39(6): 133-140. |
[9] | XIAO Liang, WU Zheng-dan, LU Liu-ying, SHI Ping-li, SHANG Xiao-hong, CAO Sheng, ZENG Wen-dan, YAN Hua-bing. Research Progress of Important Traits Genes in Cassava [J]. Biotechnology Bulletin, 2023, 39(6): 31-48. |
[10] | LEI Cai-rong, GUO Xiao-peng, CHAI Ran, ZHANG Miao-miao, REN Jun-le, LU Dong. Application of Omics Techniques in Incluced Breecling via Heavy Ion Beam Irradiating Microorganisms [J]. Biotechnology Bulletin, 2023, 39(5): 54-62. |
[11] | XUE Jiao ZHU Qing-feng FENG Yan-zhao CHEN Pei LIU Wen-hua ZHANG Ai-xia LIU Qin-jian ZHANG Qi YU Yang. Advances in Upstream Open Reading Frame in Plant Genes [J]. Biotechnology Bulletin, 2023, 39(4): 157-165. |
[12] | YAO Xiao-wen, LIANG Xiao, CHEN Qing, WU Chun-ling, LIU Ying, LIU Xiao-qiang, SHUI Jun, QIAO Yang, MAO Yi-ming, CHEN Yin-hua, ZHANG Yin-dong. Study on the Expression Pattern of Genes in Lignin Biosynthesis Pathway of Cassava Resisting to Tetranychus urticae [J]. Biotechnology Bulletin, 2023, 39(2): 161-171. |
[13] | YANG Mao, LIN Yu-feng, DAI Yang-shuo, PAN Su-jun, PENG Wei-ye, YAN Ming-xiong, LI Wei, WANG Bing, DAI Liang-ying. OsDIS1 Negatively Regulates Rice Drought Tolerance Through Antioxidant Pathways [J]. Biotechnology Bulletin, 2023, 39(2): 88-95. |
[14] | TAO Na, LI Mao-xing, GUO Hua-chun. Optimization of Sweet Potato Genetic Transformation System Mediated by Agrobacterium rhizogenes [J]. Biotechnology Bulletin, 2023, 39(10): 175-183. |
[15] | LI Shuang-xi, HUA Jin-lian. Research Progress in Anti-porcine Reproductive and Respiratory Syndrome Genetically Modified Pigs [J]. Biotechnology Bulletin, 2023, 39(10): 50-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||