[1] Watabe S, Kikuchi K, Aida K. Cold- and warm-temperature acclimation induces specific cytosolic proteins in goldfish and carp[J]. Nippon Suisan Gakkaishi, 1993, 59(1):151-156. [2] Kikuchi K, Watabe S, Suzuki Y, et al. The 65-kDa cytosolic protein associated with warm temperature acclimation in goldfish, Carassius auratus[J]. J Comp Physiol B, 1993, 163(5):349-354. [3] Hirayama M, Nakaniwa M, Ikeda D, et al. Primary structures and gene organizations of two types of Wap65 from the pufferfish Takifugu rubripes[J]. Fish Physiol Biochem, 2003, 29(3):211-224. [4] Hirayama M, Kobiyama A, Kinoshita S, et al. The occurrence of two types of hemopexin-like protein in medaka and differences in their affinity to heme[J]. J Exp Biol, 2004, 207(Pt 8):1387-1398. [5] Nakaniwa M, Hirayama M, Shimizu A, et al. Genomic sequences encoding two types of medaka hemopexin-like protein Wap65, and their gene expression profiles in embryos[J]. J Exp Biol, 2005, 208(Pt 10):1915-1925. [6] Sha Z, Xu P, Takano T, et al. The warm temperature acclimation protein Wap65 as an immune response gene:its duplicates are differentially regulated by temperature and bacterial infections[J]. Mol Immunol, 2008, 45(5):1458-1469. [7] Cho YS, Kim BS, Kim DS, et al. Modulation of warm-temperature-acclimation-associated 65-kDa protein genes(Wap65-1 and Wap65-2)in mud loach(Misgurnus mizolepis, Cypriniformes)liver in response to different stimulatory treatments[J]. Fish Shellfish Immunol, 2012, 32(5):662-669. [8] Shi YH, Chen J, Li CH, et al. Molecular cloning of liver Wap65 cDNA in ayu(Plecoglossus altivelis)and mRNA expression changes following Listonella anguillarum infection[J]. Mol Biol Rep, 2010, 37(3):1523-1529. [9] Li CH, Chen J. Molecular cloning, characterization and expression analysis of a novel wap65-1 gene from Plecoglossus altivelis[J]. Comp Biochem Physiol B Biochem Mol Biol, 2013, 165(2):144-152. [10] Kim YO, Park EM, Moon JY, et al. Genetic organization of two types of flounder warm-temperature acclimation-associated 65-kDa protein and their gene expression profiles[J]. Biosci Biotechnol Biochem, 2013, 77(10):2065-2672. [11] 赵风云, 吴初新, 朱玉娇, 等. 草鱼Wap65 基因的克隆和鉴定[J]. 水产科学, 2011, 30(5):281-286. [12] Li CH, Chen J, Shi YH, et al. Use of suppressive subtractive hybridization to identify differentially expressed genes in ayu(Plecoglossus altivelis)associated with Listonella anguillarum infection[J]. Fish and Shellfish Immunology, 2011, 31(3):500-506. [13] 史雨红, 陈炯, 高珊珊, 等. 花鲈Wap65-2 基因的克隆、理化性质及其表达与哈维氏弧菌感染的相关性研究[J]. 动物学研究, 2012, 35(5):481-486. [14] Aliza D, Ismail IS, Kuah MK, et al. Identification of Wap65, a human homologue of hemopexin as a copper-inducible gene in swordtail fish, Xiphophorus helleri[J]. Fish Physiol Biochem, 2008, 34(2):129-138. [15] Shi YH, Chen J, Li CH, et al. The establishment of a library screening method based on yeast two-hybrid system and its use to determine the potential interactions of liver proteins in ayu, Plecoglossus altivelis[J]. Fish Shellfish Immunol, 2011, 30(4-5):1184-1187. [16] Fields S, Song O. A novel genetic system to detect proteineprotein interactions[J]. Nature, 1989, 340(6230):245-246. [17] Wetie AGN, Sokolowska I, Woods AG, et al. Protein-protein interactions:switch from classical methods to proteomics and bioinformatics-based approaches[J]. Cell Mol Life Sci, 2014, 71(2):205-228. [18] Chen J, Lu XJ, Yang HY, et al. An interaction between a C-type lectin receptor and leukocyte cell-derived chemotaxin 2 of ayu, Plecoglossus altivelis[J]. Fish Shellfish Immunol, 2010, 28(1):245-248. [19] 李杰, 闫秀英, 丁燏, 等. 利用酵母双杂交系统筛选草鱼呼肠孤病毒NS38 相互作用蛋白[J]. 海洋与湖沼, 2013, 44(2):305-309. |