[1] 李兆辉, 王光明, 徐云明, 等. 镉、汞、铅污染及其微生物修复研究进展[J] . 中国畜牧兽医, 2010, 37(9):39-43. [2] Suranjana AR, Manas KR. Bioremediation of heavy metal toxicity with special reference to chromium[J] . Al Ameen Journal of Medical Sciences, 2009, 2(2):57-63. [3] 赵庆龄, 张乃弟, 路文如. 土壤重金属污染研究回顾与展望Ⅱ——基于三大学科的研究热点与前沿分析[J] . 环境科学与技术, 2010, 33(7):102-106. [4] Huang F, Dang Z, Guo CL, et al. Biosorption of Cd(II)by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil[J] . Colloids Surf B Biointerface, 2013, 107:11-18. [5] 王建龙, 陈灿. 生物吸附法去除重金属离子的研究进展[J] . 环境科学学报, 2010, 30(4):673-701. [6] Sud D, Mahajan G, Kaur MP. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions-a review[J] . Bioresour Technol, 2008, 99:6017-6027. [7] Pavel K, Martina M, Tomas M. Microbial biosorption of metals[M] . Berlin:Springer Science, 2011:320. [8] Chakraborty J, Das S. Characterization and cadmium-resistant gene expression of biofilm-forming marine bacterium Pseudomonas aerug-inosa JP-11[J] . Environ Sci Pollut Res Int, 2014, 21(24):14188-14201. [9] Singh VK, Kumar A. Production and purification of an extracellular cellulase from Bacillus brevis VS-1[J] . Biochem Mol Biol Int, 1998, 45(3):443-452. [10] Donati ER, Viera MR, Tavani EL, et al. Sulfidogenesis at low pH by acidophilic bacteria and its potential for the selective recovery of transition metals from mine waters[J] . Advanced Materials Research, 2009, 71-73:693-696. [11] Fayaz AM, Girilal M, Rahman M, et al. Biosynthesis of silver and gold nanoparticles using thermophilic bacterium Geobacillus stearothermophilus[J] . Process Biocheistry, 2011, 46(10):1958-1962. [12] Kambiz AN, Hossein SZ, Sung CY, et al. The production of a cold-induced extracellular biopolymer by Pseudomonas fluorescens BM07 under various growth conditions and its role in heavy metals absorption[J] . Process Biochemistry, 2007, 42:847-855. [13] Remacle J, Mugaruza I, Fransolet M. Cadmium removal by a strain of Alcaligenes denitrifieam isolated from a metal-polluted pond[J] . Water Resourses, 1992, 26(7):923-926. [14] Tripathi MK, Roy U, Jinwal UK, et al. Cloning, sequencing and structural features of a novel Streptococcus lipase[J] . Enzyme and Microbial Technology, 2004, 34:437-445. [15] Ye JS, Yin H, Peng H, et al. Copper biosorption and ions release by Stenotrophomonas maltophilia in the presence of benzo[a] pyrene[J] . Chemical Engineering Journal, 2013, 219:1-9. [16] 李辉, 石璐, 张国芳, 等. 蜡状芽孢杆菌SY对镉的吸附机制[J] . 科技导报, 2010, 28(7):59-62. [17] 刘瑞霞, 潘建华, 汤鸿霄, 等. Cu(Ⅱ)离子在Micrococcus luteus细菌上的吸附机理[J] . 环境化学, 2002, 1:50-55. [18] 白洁琼, 尹华, 叶锦绍, 等. 嗜麦芽窄食单胞菌对铜镉的吸附特性与离子交换[J] . 环境科学, 2013(1):217-225. [19] Pan XH, Chen Z, Chen YJ, et al. The analysis of the immobilization mechanism of Ni(II)on Bacillus cereus[J] . Journal of Nanoscience and Nanotechnology, 2011, 11(4):3597-3603. [20] 刘红娟, 张慧, 党志, 等. 一株耐镉细菌的分离及其富集Cd的机理[J] . 环境工程学报, 2009, 3(2):367-371. [21] Bahari ZM, Altowayti W, Ibrahim Z, et al. Biosorption of As(III)by Non-living biomass of an arsenic-hypertolerant Bacillus cereus strain SZ2 isolated from a gold mining environment:equilibrium and kinetic study[J] . Appl Biochemi Biotechnol, 2013, 8:2247. [22] 杨洲平, 陈平, 王振宇, 等. 粗毛栓菌和蜡状芽孢杆菌及其共固定菌对Pb(Ⅱ)的吸附[J] . 应用生态学报, 2012, 23(8):2212-2218. [23] Joo J, Hassan SHA, Oh S. Comparative study of biosorption of Zn2+ by Pseudomonas aeruginosa and Bacillus cereus[J] . International Biodeterioration and Biodegradation, 2010, 64(8):734-741. [24] Bai J, Yang XH, Du RY, et al. Biosorption mechanisms involved in immobilization of soil Pb by Bacillus subtilis DBM in a multi-metal-contaminated soil[J] . J Eeviron Sci, 2014, 10:2056-2064. [25] Valenzuela C, Campos V, Yanez J, et al. Isolation of arsenite-oxidizing bacteria from arsenic-enriched sediments from Camarones River, Northern Chile[J] . Bulletin of Environmental Contamination and Toxicology, 2009, 82(5):593-596. [26] 陈亚刚, 陈雪梅, 张玉刚, 等. 微生物抗重金属的生理机制[J] . 生物技术通报, 2009(10):60-65. [27] Fan H, Su C, Wang Y, et al. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China[J] . Journal of Applied Microbiology, 2005, 105(2):529-539. [28] Li L, Hu Q, Zeng JH, et al. Resistance and biosorption mechanism of silver ions by Bacillus cereus biomass[J] . Journal of Environmental Sciences, 2011, 23(1):108-111. [29] Shan Q, Fang M, Huang X, et al . Study on the adsorption of bacteria in ceramsite and their synergetic effect on adsorption of heavy metals[J] . Water Sci Technol, 2014, 69(2):407-413. [30] 刘义, 何钢, 陈介南, 等. 细菌的锌抗性基因及其在生物修复中的应用[J] . 生物技术通报, 2008, 2:35-38. [31] Baldi F, Gallo M, et al. Seasonal mercury transformation and surficial sediment detoxification by bacteria of Marano and Grado lagoons[J] . Estuari Coast Shelf Sci, 2012, 113:105-115. [32] Osman D, Waldron KJ, Denton H, et al. Copper homeostasis in Salmonella is atypical and copper-CueP is a major periplasmic metal complex[J] . J Biol Chem, 2010, 33:25259-25268. [33] Wang XY, Chen MLi, et al. Genome sequence analysis of the naph-thenic acid degrading and metal resistant bacterium Cupriavidus gilardii CR3[J] . PLoS One, 2015, 8:e0132881. [34] 李樊, 刘义, 孙伟峰, 等, 铜绿假单胞菌czcCBA基因与生物修复[J] . 生物技术通报, 2010(11):44-47. [35] Boutoille D, Jacqueline C, Le Mabecque V, et al. In vivo impact of the MexAB-OprM efflux system on beta-lactam efficacy in an experimental model of Pseudomonas aeruginosa infection[J] . Int J Antimicrob Agents, 2009, 33(5):417-420. [36] Stahl A, Pletze D, Mehmood A, et al. Marinobacter adhaerens HP15 harbors two CzcCBA efflux pumps involved in zinc detoxification[J] . Antonie Van Leeuwenhoek, 2015, 108:649-658. [37] Andres LT, Lorena NA, et al. CtpA, a putative Mycobacterium tube-rculosis P-type ATPase, is stimulated by copper(I)in the mycob-acterial plasma membrane[J] . Biometals, 2015, 28:713-724. [38] Zhang WW, Yin K, Li BW, et al. A glutathione S-transferase from Proteus mirabilis involved in heavy metal resistance and its potential application in removal of Hg2+[J] . Journal of Hazardous Materials, 2013, 261:646-652. [39] 王伟. 恶臭假单胞菌CD2 P型ATP酶基因cadA1抗Zn2+功能的确定[D] . 武汉:华中农业大学, 2008. [40] Giovanella P, Costa AP, Schffer N, et al. Detoxification of mercury by bacteria using crude glycerol from biodiesel as a carbon source[J] . Water Air Soil Pollut, 2015, 226:224. [41] Santos-Gandelman JF, Cruz K, Crane S, et al. Potential application in mercury bioremediation of a marine sponge-Isolated Bacillus cereus strain Pj1[J] . Curr Microbiol, 2014, 69(3):374-380. [42] Rahman Z, Singh VP. Cr(VI)reduction by Enterobacter sp. DU17 isolated from the tannery waste dump site and characterization of the bacterium and the Cr(VI)reductase[J] . International Biodeterioration and Biodegradation, 2014, 91:97-103. [43] Yamamura S, Amachi S. Microbiology of inorganic arsenic:From metabolism to bioremediation[J] . Journal of Bioscience and Bioengineering, 2014, 118(1):1-9. [44] Bahar MM, Megharaj M, Naidu R. Oxidation of arsenite to arsenate in growth medium and groundwater using a novel arsenite-oxidizing diazotrophic bacterium isolated from soil[J] . International Biodeterioration and Biodegradation, 2016, 106:178-182. [45] Li J, Wang Q, Zhang SZ, et al. Phylogenetic and genome analyses of antimony-oxidizing bacteria isolated from antimony mined soil[J] . Int Biodeterior Biodegradation, 2013, 76:76-80. [46] Sinha A, Kumar S, Khare SK. Biochemical basis of mercury remediation and bioaccumulation by Enterobacter sp. EMB21[J] . Appl Biochem Biotechnol, 2013, 169(1):256-267. [47] Vasak M. Advances in metallothionein structure and functions. [J] . J Trace Elem Med Biol, 2005, 19(1):13-17. [48] Ward SK, Abomoelak B, Hoye EA, et al. CtpV:a putative copper exporter required for full virulence of Mycobacterium tuberculosis[J] . Mol Microbiol, 2010, 77(5):1096-1110. |