[1] Weis M, Lim EK, Bruce NC, et al. Engineering and kinetic characterization of two glucosyltransferases from Arabidopsis thaliana[J] . Biochimie, 2008, 90:830-834. [2] Buettner FF, Ashikov A, Tiemann B, et al. C. elegans DPY-19 is a C-mannosyltransferase glycosylating thrombospondin repeats[J] . Mol Cell, 2013, 50:295-302. [3] 尹恒, 王文霞, 赵小明, 等. 植物糖生物学研究进展[J] . 植物学报, 2010, 45(5):521-529. [4] 王军, 侯丙凯. 植物小分子化合物的糖基化与糖基转移酶植物[J] . 生理学通讯, 2008, 44(5):997-1003. [5] 王黎, 罗静, 裴瑾, 等. 橘核柠檬苦素葡萄糖基转移酶基因(lgt)的克隆与表达分析[J] . 中药材, 2015, 38(12):2493-2496. [6] 王毅, 王晨晨, 周旭, 等. 七彩红中竹类黄酮-3-O-葡萄糖基转移酶基因的克隆及功能分析[J] . 广西植物, 2015, 35(2):244 -249. [7] 王伟英, 李海明, 戴艺民, 等.中国水仙类黄酮3-氧-葡糖基转移酶基因的克隆与序列分析[J] .福建农业学报, 2005, 30(6):577-581. [8] 梁燕梅, 朱攀攀, 李军, 等. 桑树类黄酮 3-O-葡萄糖基转移酶基因的鉴定及主效基因功能分析[J] . 园艺学报, 2015, 42(10):1919-1930. [9] 黎晓英, 伍贤进, 姚元枝, 等. 鱼腥草糖基转移酶基因 UGT75C1 的克隆及原核表达[J] . 园艺学报, 2015, 42(11):2299-2305. [10] Zhang B, Zhao T, Yu W, et al. Functional conservation of the glycosyltransferase gene GT47A in the monocot rice[J] . J Plant Res, 2014, 127(3):423-432. [11] Li L, Huang J, Qin L, et al. Two cotton fiber-associated glycosyltra-nsferases, GhGT43A1 and GhGT43C1, function in hemicellulose glucuronoxylan biosynthesis during plant development[J] . Physiol Plant, 2014, 152(2):367-379. [12] Song C, Gu L, Liu J, et al. Functional characterization and substrate promiscuity of UGT71 glycosyltransferases from strawberry(Fragaria×ananassa)[J] . Plant Cell Physiol, 2015, 56(12):2478-2493. [13] Huang J, Pang C, Fan S, et al. Genome-wide analysis of the family 1 glycosyltransferases in cotton[J] . Mol Genet Genomics, 2015, 290(5):1805-1818. [14] Dai L, Liu C, Zhu Y, et al. Functional characterization of cucurbitadienol synthase and triterpene glycosyltransferase involved in biosynthesis of mogrosides from Siraitia grosvenorii[J] . Plant Cell Physiol, 2015, 56(6):1172-1182. [15] Jung SC, Kim W, Park SC, et al. Two ginseng UDP-glycosyltransf-erases synthesize ginsenoside Rg3 and Rd[J] . Plant Cell Physiol, 2014, 55(12):2177-2188. [16] Sharma R, Rawat V, Surrsh CG. Genome-wide identification and tissue-specific expression analysis of UDP-glycosyltransferases genes confirm their abundance in Cicer arietinum(Chickpea)genome[J] . PLoS One, 2014, 9(10):e109715. [17] Li Y, Li P, Wang Y, et al. Genome-wide identification and phylogenetic analysis of Family-1 UDP glycosyltransferases in maize(Zea mays)[J] . Planta, 2014, 239(6):1265-1279. [18] Ogata J, Kanno Y, Itoh Y, et al. Anthocyanin biosynthesis in roses[J] . Nature, 2005, 435(7043):757-758. [19] Ishihara H, Touge T, Viehover P. Natural variation in flavonol accumulation in Arabidopsis is determined by the flavonol glucosyltransferase BGLU6[J] . J Exp Bot, 2016, 67(5):1505-1517. [20] Priest DM, Ambrose SJ, Vaistij FE, et al. Use of the glucosyltransferase UGT71B6 to disturb abscisic acid homeostasis in Arabidopsis thaliana[J] . Plant J, 2006, 46:492-502. [21] Seo M, Koshiba T. Complex regulation of ABA biosynthesis in plants[J] . Trends Plant Sci, 2002, 7:41-48. [22] Lee KH, Piao HL, Kim HY, et al. Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid[J] . Cell, 2006, 126:1109-1120. [23] Dong T, Hwang I. Contribution of ABA UDP-glucosyltransferases in coordination of ABA biosynthesis and catabolism for ABA homeostasis[J] . Plant Signal Behav, 2014, 9(7):e28888. [24] Ahrazem O, Rubio-Moragaa A, Trapero-Mozos A, et al. Ectopic expression of a stress-inducible glycosyltransferase from saffron enhances salt and oxidative stress tolerance in Arabidopsis while alters anchor root formation[J] . Plant Sci, 2015, 234:60-73. [25] 贺晓岚, 王建伟, 李文旭, 等. 大赖草6-SFT基因的克隆及其转基因烟草抗旱和抗寒性分析[J] . 作物学报, 2016, 42(3):389-398. [26] Mishra MK, Singh G, Tiwari S, et al. Characterization of Arabidopsis sterol glycosyltransferase TTG15/UGT80B1 role during freeze and heat stress[J] . Plant Signal Behav, 2015, 10(12):e1075682. [27] Li W, Zhang F, Chang Y, et al. Nicotinate O-glucosylation is an evolutionarily metabolic trait important for seed germination under stress conditions in Arabidopsis thaliana[J] . Plant Cell, 2015, 27(7):1907-1924. [28] Zhang GZ, Jin SH, Jiang XY, et al. Ectopic expression of UGT75D1, a glycosyltransferase preferring indole-3-butyric acid, modulates cotyledon development and stress tolerance in seed germination of Arabidopsis thaliana[J] . Plant Mol Biol, 2016, 90(1-2):77-93. [29] von Saint Paul V, Zhang W, Kanawati B, et al. The Arabidopsis glucosyltransferase UGT76B1 conjugates isoleucic acid and modulates plant defense and senescence[J] . Plant Cell, 2011, 23(11):4124-4145. [30] Park HJ, Kwon CS, Woo JY, et al. Suppression of UDP-glycosyltransferase-coding Arabidopsis thaliana UGT74E2 gene expression leads to increased resistance to Psuedomonas syringae pv. tomat DC3000 infection[J] . Plant Pathol J, 2011, 27(2):170-182, 292. [31] Noutoshi Y, Okazaki M, Kida T, et al. Novel plant immune-priming compounds identified via high-throughput chemical screening target salicylic acid glucosyltransferases in Arabidopsis[J] . Plant Cell, 2012, 24(9):3795-3804. |