[1] 葛淑娟, 孙爱清, 刘鹏, 等. 玉米响应渗透胁迫的数字基因表达谱分析[J]. 作物学报, 2014, 40(7):1164-1173. [2] Campos H, Cooper M, Habben JE, et al. Improving drought tolerance in maize:a view from industry[J]. Field Crops Res, 2004, 90:19-34. [3] 卜令铎, 张仁和, 常宇, 等. 苗期玉米叶片光合特性对水分胁迫的响应[J]. 生态学报, 2010, 30(5):1184-1191. [4] 霍金龙, 苗永旺, 曾养志. 基因芯片技术及其应用[J]. 生物技术通讯, 2007, 18(2):329-332. [5] 陈郁. 基因芯片数据分析及在植物基因组研究中的应用[J]. 氨基酸和生物资源, 2008, 30(1):33-36. [6] Zhu JK. Salt and drought stress signal transduction in plants[J]. Annu Rev Plant Biol, 2002, 53:247-273. [7] 王金. 玉米耐旱突变体18-599M谷胱甘肽硫转移酶的突变鉴定[D]. 雅安:四川农业大学, 2009:29. [8] 王丽萍, 戚元成, 张世敏, 等. 盐地碱蓬GST基因的克隆、序列分析及其表达特征[J]. 植物生理与分子生物学报, 2002, 28(2):133-136. [9] Edwards R, Dixon DP. Herbicides and their mechanisms of action[M]//Cobb AH, Kirkwood RC. Sheffield:Sheffield Academic Press, 2000:33-71. [10] Gallé Á, Csiszár J, Benyó D, et al. Changes of glutathione S-transferase activities and geneexpression in Triticum aestivum during polyethylene-glycolinduced osmotic stress[J]. Acta Biologica Szegediensis, 2005, 49(1-2):95-96. [11] 戚元成, 张小强, 刘卫群, 等. 过量表达谷胱甘肽转移酶基因对转基因拟南芥抗旱能力的影响[J]. 植物生理学通讯, 2008, 44(2):268-270. [12] 刘迪林. 赵普艳. 植物基质金属蛋白酶的研究进展[J]. 西北植物学报, 2013, 33(3):636-642. [13] Wei KF, Zhong XJ. Non-specific lipid transfer proteins in maize[J]. BMC Plant Biol, 2014, 14:281. [14] Bohnert H, Sharp RE, Springer GK, et al. Functional genomics of root growth and root signaling under drought[J]. NSF Grant, 2002:DBI-0211842. [15] Schnable PS, Ware D, Fulton RS. The B73 maize genome:complexity, diversity, and dynamics[J]. Science, 2009, 326(5956):1112-1115. |