Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (12): 30-36.doi: 10.13560/j.cnki.biotech.bull.1985.2017-0502
Previous Articles Next Articles
ZHAO Fang-dong, LI Lin-kun, HE Xu-sheng, ZENG Hui-ming
Received:
2017-06-14
Online:
2017-12-25
Published:
2017-12-21
ZHAO Fang-dong, LI Lin-kun, HE Xu-sheng, ZENG Hui-ming. Roles of Key Genes and Relevant Plant Hormones in the Early and Late Stages of Plant Embryogenesis[J]. Biotechnology Bulletin, 2017, 33(12): 30-36.
[1]Suárez MF, Suárez MF, Botanik HC. Plant embryogenesis[J]. Methods in Molecular Biology, 2008, 427(1997):535-576. [2]Arnold SV, Sabala I, Bozhkov P, et al. Developmental pathways of somatic embryogenesis[J]. Plant Cell, Tissue and Organ Culture, 2002, 69(3):233-249. [3]Elhiti M, Stasolla C. Somatic embryogenesis:The molecular network regulating embryo formation[M]. New Delhi:Springer India, 2016. [4]Hübers M, Kerp H, Schneider JW, et al. Dispersed plant mesofossils from the middle Mississippian of eastern Germany:Bryophytes, pteridophytes and gymnosperms[J]. Review of Palaeobotany & Palynology, 2013, 193(3):38-56. [5]Rieu I, Laux T. Signaling pathways maintaining stem cells at the plant shoot apex[J]. Semin Cell Dev Biol, 2009, 20(9):1083-1088. [6]Bowman JL, Eshed Y. Formation and maintenance of the shoot apical meristem[J]. Trends in Plant Science, 2000, 5(3):110-115. [7]蒋文婷, 曾会明. 落地生根胎生苗发育及其相关基因研究进展[J]. 生物技术通报, 2016(7):13-20. [8]Haecker A, Laux T. Cell-cell signaling in the shoot meristem[J]. Current Opinion in Plant Biology, 2001, 4(5):441. [9]Kwong RW, Bui AQ, Lee H, et al. Leafy cotyledon1-like defines a class of regulators essential for embryo development[J]. Plant Cell, 2003, 15(1):5-18. [10]Zhu SP, Wang J, Ye JL, et al. Isolation and characterization of leafy cotyledon 1-like gene related to embryogenic competence in citrus sinensis[J]. Plant Cell Tissue Organ Cult, 2014, 119(1):1-13. [11] Wójcikowska B, Jaskó?a K, G?siorek P, et al. Leafy cotyledon2(lec2)promotes embryogenic induction in somatic tissues of Arabidopsis, via yucca-mediated auxin biosynthesis[J]. Planta, 2013, 238(3):425-440. [12]Meinke DW, Franzmann LH, Nickle TC, et al. Leafy cotyledon mutants of Arabidopsis[J]. Plant Cell, 1994, 6(8):1049-1064. [13] Stone SL, Kwong LW, Yee KM, et al. Leafy cotyledon2 encodes a B3 domain transcription factor that induces embryo development[J]. Proc Natl Acad Sci USA, 2001, 98(20):11806-11811. [14]Ledwoń A, Gaj MD. Leafy cotyledon2 gene expression and auxin treatment in relation to embryogenic capacity of Arabidopsis somatic cells[J]. Plant Cell Reports, 2009, 28(11):1677-1688. [15]Stone SL, Braybrook SA, Paula SL, et al. Arabidopsis leafy cotyledon2 induces maturation traits and auxin activity:Implications for somatic embryogenesis[J]. Proceedings of the National Academy of Sciences, 2008, 105(8):3151-3156. [16]Yadav RK, Reddy GV. WUSCHEL protein movement and stem cell homeostasis[J]. Plant Signal Behav, 2012, 7(5):592-594. [17]Busch W, Miotk A, Ariel FD, et al. Transcriptional control of a plant stem cell niche[J]. Dev Cell, 2010, 18(5):841-853. [18]Yadav RK, Perales M, Gruel J, et al. Wuschel protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex[J]. Genes & Development, 2011, 25(19):2025-2030. [19]Cao X, He Z, Guo L, et al. Epigenetic mechanisms are critical for the regulation of wuschel expression in floral meristems[J]. Plant Physiology, 2015, 168(4):1189-1196. [20]Han P, Li Q, Zhu YX. Mutation of Arabidopsis bard1 causes meristem defects by failing to confine wuschel expression to the organizing center[J]. Plant Cell, 2008, 20(6):1482-1493. [21]Vollbrecht E, Reiser L, Hake S. Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted1[J]. Development, 2000, 127(14):3161. [22]Haecker A. Role of wuschel in regulating stem cell fate in the Arabidopsis shoot meristem[J]. Cell, 1999, 95(6):805-815. [23]Endrizzi K, Moussian B, Haecker A, et al. The shoot meristemless gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes wuschel and zwille[J]. Plant Journal, 1996, 10(6):967-979. [24]Weigel D, Jürgens G. Stem cells that make stems[J]. Nature, 2002, 415(6873):751-754. [25]Gabor D, Anna M, Takuya S. A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis[J]. Proc Natil Acad Sci, 2014, 111(40):14619-14624. [26]Schoof H, Lenhard M, et al. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the clavata and wuschel genes[J]. Cell, 2000, 100(6):635-644. [27] Fletcher JC, Brand U, Running MP, et al. Signaling of cell fate dec-isions by clavata3 in Arabidopsis shoot meristems[J]. Science, 1999, 283(5409):1911-1914. [28] Kondo T, Sawa S, Kinoshita A, et al. A plant peptide encoded by clv3 identified by in situ maldi-tof ms analysis[J]. Science, 2006, 313(5788):845-848. [29] Ogawa M, Shinohara H, Sakagami Y, et al. Arabidopsis CLV3 peptide directly binds CLV1 ectodomain[J]. Science, 2008, 319(5861):294. [30]Lucas WJ, Bouchépillon S, Jackson DP, et al. Selective trafficking of knotted1 homeodomain protein and its mrna through plasmodesmata[J]. Science, 1995, 270(270):1980-1983. [31]Jackson D. Double labeling of knotted1 mrna and protein reveals multiple potential sites of protein trafficking in the shoot apex[J]. Plant Physiology, 2002, 129(4):1423-1429. [32]Lenhard M, Jürgens G, Laux T. The wuschel and shootmeristemless genes fulfil complementary roles in Arabidopsis shoot meristem regulation[J]. Development, 2002, 129(13):3195-3206. [33]Gallois JL, Woodward C, Reddy GV, et al. Combined shoot meristemless and wuschel trigger ectopic organogenesis in Arabidopsis[J]. Development, 2002, 129(13):3207-3217. [34]Scofield S, Murray JA. Knox gene function in plant stem cell niches[J]. Plant Molecular Biology, 2006, 60(6):929-946. [35]Williams L, Fletcher JC. Stem cell regulation in the Arabidopsis shoot apical meristem[J]. Curr Opin Plant Biol, 2005, 8(6):582-586. [36]Zhao Y, Chory J. A role for flavin monooxygenase-like enzymes in auxin biosynthesis[J]. Science, 2001, 291(5502):306-309. [37]Gaj MD, Trojanowska A, Ujczak A, et al. Hormone-response mutants of Arabidopsis thaliana(L.)heynh impaired in somatic embryogenesis[J]. Plant Growth Regulation, 2006, 49(2):183-197. [38]Wang H, Caruso LV, Downie AB, et al. The embryo mads domain protein agamous-like 15 directly regulates expression of a gene encoding an enzyme involved in gibberellin metabolism[J]. Plant Cell, 2004, 16(5):1206-1219. [39]Kikuchi A, Sanuki N, Higashi K, et al. Abscisic acid and stress treatment are essential for the acquisition of embryogenic competence by carrot somatic cells[J]. Planta, 2006, 223(4):637-645. [40]Tokuji Y, Kuriyama K. Involvement of gibberellin and cytokinin in the formation of embryogenic cell clumps in carrot(Daucus carota)[J]. J Plant Physiol, 2003, 160(2):133-141. [41]Braybrook SA, Stone SL, Park S, et al. Genes directly regulated by leafy cotyledon2 provide insight into the control of embryo maturation and somatic embryogenesis[J]. Proc Natl Acad Sci U S A, 2006, 103(9):3468-3473. [42]Wójcikowska B, Gaj MD. Leafy cotyledon2 -mediated control of the endogenous hormone content:Implications for the induction of somatic embryogenesis in Arabidopsis[J]. Plant Cell, Tissue and Organ Culture, 2015, 121(1):255-258. [43] Braybrook SA, Harada JJ. LECs go crazy in embryo development[J]. Trends Plant Sci, 2008, 13(12):624-630. [44]Long J, Barton MK. Initiation of axillary and floral meristems in Arabidopsis[J]. Dev Biol, 2000, 218(2):341-353. [45]Reinhardt D, Kuhlemeier C. Auxin regulates the initiation and radial position of plant lateral organs[J]. Plant Cell, 2000, 12(4):507-518. [46]Benkova E, Michniewicz M, Sauer M, et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation[J]. Cell, 2003, 115(5):591-602. [47]Veit B. Hormone mediated regulation of the shoot apical meristem[J]. Plant Molecular Biology, 2009, 69(4):397-408. [48]Jones B, Gunner?s SA, Petersson SV, et al. Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction[J]. Plant Cell, 2010, 22(9):2956-2969. [49]Cheng ZJ, Wang L, Sun W, et al. Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by auxin response factor3[J]. Plant Physiology, 2013, 161(1):240-251. [50]Heisler MG, Ohno C, Das P, et al. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem[J]. Current Biology Cb, 2005, 15(21):1899-1911. [51] Yanai O, Shani E, Dolezal K, et al. Arabidopsis knoxi proteins acti-vate cytokinin biosynthesis[J]. Curr Biol, 2005, 17:1566-1571. [52]Zhong Z, Andersen SU, Ljung K, et al. Hormonal control of the shoot stem-cell niche[J]. Nature, 2010, 465(7301):1089-1092. [53]Kieffer M, Stern Y, Cook H, et al. Analysis of the transcription factor wuschel and its functional homologue in antirrhinum reveals a potential mechanism for their roles in meristem maintenance[J]. Plant Cell, 2006, 18(3):560-573. [54]Szemenyei H, Hannon M, Long JA. TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis[J]. Science, 2008, 319(5868):1384-1386. [55]Long JA, Ohno C, Smith ZR, et al. Topless regulates apical embryonic fate in Arabidopsis[J]. Science, 2006, 312(5779):1520. [56]Dodsworth S. A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem[J]. Developmental Biology, 2009, 336(1):1-9. [57]Jasinski S, Piazza P, Craft J, et al. Knox action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities[J]. Current Biology Cb, 2005, 15(17):1560-1565. [58]Leibfried A, To JP, Busch W, et al. Wuschel controls meristem function by direct regulation of cytokinin-inducible response regulators[J]. Nature, 2005, 438(7071):1172-1175. [59]Sakamoto T, Kamiya N, Ueguchi-Tanaka M, et al. Knox homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem[J]. Genes & Development, 2001, 15(5):581-590. [60]Kyozuka J. Control of shoot and root meristem function by cytokinin[J]. Curr Opin Plant Biol, 2007, 10(5):442-446. [61] Yanai O, Shani E, Dolezal K, et al. Arabidopsis KNOXI proteins activate cytokinin biosynthesis[J]. Curr Biol, 2005, 17:1566-1571. [62]Gordon SP, Chickarmane VS, Ohno C, et al. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem[J]. Proceedings of the National Academy of Sciences, 2009, 106(38):16529-16534. [63]Müller R, Borghi L, Kwiatkowska D, et al. Dynamic and compensatory responses of Arabidopsis shoot and floral meristems to clv3 signaling[J]. Plant Cell, 2006, 18(5):1188-1198. [64]Brand U, Fletcher JC, Hobe M, et al. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by clv3 activity[J]. Science, 2000, 289(5479):617-619. [65]Miwa H, Kinoshita A, Fukuda H, et al. Plant meristems:Clavata3/esr-related signaling in the shoot apical meristem and the root apical meristem[J]. J Plant Res, 2009, 122(1):31-39. |
[1] | LIU Bao-cai, CHEN Jing-ying, ZHANG Wu-jun, HUANG Ying-zhen, ZHAO Yun-qing, LIU Jian-chao, WEI Zhi-cheng. Characteristics Analysis of Seed Microrhizome Gene Expression of Polygonatum cyrtonema [J]. Biotechnology Bulletin, 2023, 39(8): 220-233. |
[2] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[3] | WANG Bing, ZHAO Hui-na, YU Jing, YU Shi-zhou, LEI Bo. Research Progress in the Regulation of Plant Branch Development [J]. Biotechnology Bulletin, 2023, 39(5): 14-22. |
[4] | WANG Yi-qing, WANG Tao, WEI Chao-ling, DAI Hao-min, CAO Shi-xian, SUN Wei-jiang, ZENG Wen. Identification and Interaction Analysis of SMAS Gene Family in Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(4): 246-258. |
[5] | YU Shi-xia, JIANG Yu-tong, LIN Wen-hui. Research Progress in Signals and Molecular Mechanisms of Ovule Primordia Initiation [J]. Biotechnology Bulletin, 2023, 39(2): 1-9. |
[6] | SUN Yu-tong, LIU De-shuai, QI Xun, FENG Mei, HUANG Xu-zheng, YAO Wen-kong. Advances in Jasmonic Acid Regulating Plant Growth and Development as Well as Stress [J]. Biotechnology Bulletin, 2023, 39(11): 99-109. |
[7] | ZHANG Yu-juan, LI Dong-hua, GONG Hui-hui, CUI Xin-xiao, GAO Chun-hua, ZHANG Xiu-rong, YOU Jun, ZHAO Jun-sheng. Cloning and Salt-tolerance Analysis of NAC Transcription Factor SiNAC77 from Sesamum indicum L. [J]. Biotechnology Bulletin, 2023, 39(11): 308-317. |
[8] | WEI Xin-xin, LAN Hai-yan. Advances in the Regulation of Plant MYB Transcription Factors in Secondary Metabolism and Stress Response [J]. Biotechnology Bulletin, 2022, 38(8): 12-23. |
[9] | LIU Na, JIAO Jing-lin, RAO Zheng-hua. Research Progress in the Detection Methods of Short Chain Fatty Acids in Animal Samples [J]. Biotechnology Bulletin, 2022, 38(8): 84-91. |
[10] | HONG Tian-shu, HAI Ying, ENHE Ba-ya-er, GAO Feng. Analysis of Expression Characteristics of CmABCG8 Gene in Cucumis melo L. [J]. Biotechnology Bulletin, 2022, 38(7): 178-185. |
[11] | HONG Ya-ping, CHEN Xue-jin, WANG Peng-jie, GU Meng-ya, GAO Ting, YE Nai-xing. Transcriptome Identification of Terpenoid Synthase Genes in Jasminum sambac and Their Expressions Responding to Exogenous Hormones [J]. Biotechnology Bulletin, 2022, 38(3): 41-49. |
[12] | ZHANG Hong-yan, LIN Guo-li, LI Ru-lian, JI Xiao-qi. Screening of Antagonist Against Tomato Fruit Rot and Their Preservation Qualities on Tomato [J]. Biotechnology Bulletin, 2022, 38(3): 69-78. |
[13] | WANG Zhi-bo, WANG Dao-ping, MIAO Lan, LI Ying, PAN Ying-hong, LIU Jian-xun. Comparative Study on Methods of Analyzing Proteome in Blood Samples [J]. Biotechnology Bulletin, 2021, 37(8): 307-318. |
[14] | HUANG Wen-kun, YU Jing-wen, JIA Jian-ping, PENG De-liang. Effects of Plant Hormones on the Establishment and Development of Plant Parasitic Nematodes’ Feeding Sites [J]. Biotechnology Bulletin, 2021, 37(7): 56-64. |
[15] | BAI Fu-mei, LI Zhi-min, WANG Xiao-qin, HU Zi-wei, BAO Ling-ling, LI Zhi-min. Biochemical Characterization and Structural Analysis of N-acetylornithine Transaminase from Synechocystis sp. PCC6803 [J]. Biotechnology Bulletin, 2021, 37(5): 98-107. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||