Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (4): 44-50.doi: 10.13560/j.cnki.biotech.bull.1985.2017.04.006
• Orignal Article • Previous Articles Next Articles
GUAN Gui-jing, ZHAO Heng-yan, WANG Hong-su, LIU Jin-xiang
Received:
2016-09-05
Online:
2017-04-25
Published:
2017-04-25
GUAN Gui-jing, ZHAO Heng-yan, WANG Hong-su, LIU Jin-xiang. Effects of Virus-Plant Interaction on Biological Characteristics of Insects as Vectors[J]. Biotechnology Bulletin, 2017, 33(4): 44-50.
[1] Mauck KE, De Moraes CM, Mescher MC. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts[J]. Proceedings of the National Academy of Sciences, 2010, 107(8):3600-3605. [2] Mauck K, Bosque-Perez NA, Eigenbrode SD, et al. Transmission mechanisms shape pathogen effects on host-vector interactions:evidence from plant viruses[J]. Functional Ecology, 2012, 26(5):1162-1175. [3] Blanc S, Michalakis Y. Manipulation of hosts and vectors by plant viruses and impact of the environment[J]. Current Opinion in Insect Science, 2016, 16:36-43. [4] Schliephake E, Habekuss A, Scholz M, et al. Barley yellow dwarf virus transmission and feeding behaviour of rhopalosiphum padi on hordeum bulbosum clones[J]. Entomologia Experimentalis Et Applicata, 2013, 146(3):347-356. [5] Li S, Wang SJ, Wang X, et al. Rice stripe virus affects the viability of its vector offspring by changing developmental gene expression in embryos[J]. Scientific Reports, 2015, 5(5):417-446. [6] Bosque-Pérez NA, Eigenbrode SD. The influence of virus-induced changes in plants on aphid vectors:Insights from luteovirus pathosystems[J]. Virus Research, 2011, 159(2):201-205. [7] Shapiro L, De Moraes CM, Stephenson AG, et al. Pathogen effects on vegetative and floral odours mediate vector attraction and host exposure in a complex pathosystem[J]. Ecology Letters, 2012, 15(12):1430-1438. [8] Nogia VK, Singh V, Meghwal RR. Effect of cotton leaf curl virus infected plants on the biology of the whitefly, Bemisia tabaci(Hemiptera:Aleyrodidae):Vector-virus mutualism[J]. Phytoparasitica, 2014, 42(5):619-625. [9] 刘守安, 王梦馨, 韩宝瑜. 植物挥发性物质在茶树病害监测和防御中的作用研究现状[J]. 中国茶叶, 2010, 32(1):12-14. [10] Luan JB, Yao DM, Zhang T, et al. Suppression of terpenoid synthesis in plants by a virus promotes its mutualism with vectors[J]. Ecology Letters, 2013, 16(3):390-398. [11] Howe GA, Jander G. Plant immunity to insect herbivores[J]. Annual Review of Plant Biology, 2008, 59(59):41-66. [12] Cheung WHK, Pasamontes A, Peirano DJ, et al. Volatile organic compound(VOC)profiling of citrus tristeza virus infection in sweet orange citrus varietals using thermal desorption gas chromatography time of flight mass spectrometry(TD-GC/TOF-MS)[J]. Metabolomics, 2015, 11(6):1514-1525. [13] 赵荣乐. 黄瓜花叶病毒感染引起甜瓜植株苯丙氨酸解氨酶和叶绿素的变化[J]. 吉首大学学报:自然科学版, 2006, 27(3):78-81. [14] Su Q, Preisser EL, Zhou XM, et al. Manipulation of host quality and defense by a plant virus improves performance of whitefly vectors[J]. Journal of Economic Entomology, 2015, 108(1):11-19. [15] Nair, AB, Umamaheswaran, K. Enzymatic Responses to Srilankan cassava mosaic virus infection in cassava plants after grafting[J]. International Journal of Applied and Pure Science and Agriculture, 2016, 2(3):165-170. [16] Ralph J, Bunzel M, Marita JM, et al. Peroxidase-dependent cross-linking reactions of p-hydroxycinnamates in plant cell walls[J]. Phytochemistry Reviews, 2003, 3(1):79-96. [17] Duffey SS, Stout MJ. Antinutritive and toxic components of plant defense against insects[J]. Archives of Insect Biochemistry & Physiology, 1996, 32(1):3-37. [18] Singh A, SubudhiE. Expression of a chitinase family protein at4g01700 from Arabidopsis thaliana[J]. Austin Journal of Computational Biology & Bioinformatics, 2014, 1(4):23-30. [19] Eboigbe L, Tzima AK, Paplomatas EJ, et al. The role of the β-1, 6-endoglucanase gene vegB in physiology and virulence of Verticillium dahliae[J]. Phytopathologia Mediterranea, 2014, 53(1):94-107. [20] Abe H, Tomitaka Y, Shimoda T, et al. Antagonistic plant defense system regulated by phytohormones assists interactions among vector insect, thrips and a tospovirus[J]. Plant & Cell Physiology, 2012, 53(1):204-212. [21] El-Morsi Adel, Abdelkhalek A, E-Shehaby O, et al. Pathogenesis-related genes as tools for discovering the response of onion defence system against Iris yellow spot virus infection[J]. Botany-botanique, 2015, 93(11):735-744. [22] Röhring C. Induction of Pathogenesis-related proteins of group 1 by systemic virus infections of Nicotiana tabacum L.[J]. Beiträge Zur Tabakforschung International Contributions to Tobacco Research, 2015, 18(2):63-70. [23] Ary MB, Richardson M, Shewry PR. Purification and characteriza-tion of an insect α-amylase inhibitor/endochitinase from seeds of job’s tears(Coix lachryma-jobi)[J]. Biochimica Et Biophysica Acta, 1989, 999(3):260-266. [24] Shi XB, Pan HP, Xie W, et al. Plant virus differentially alters the plant’s defense response to its closely related vectors[J]. PLoS One, 2013, 8(12):e83520-e83520. [25] Mauck KE, De Moraes CM, Mescher MC. Biochemical and physiological mechanisms underlying effects of cucumber mosaic virus on host-plant traits that mediate transmission by aphid vectors[J]. Plant Cell and Environment, 2014, 37(6):1427-1439. [26] Zarate SI, Kempema LA, Walling LL. Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses[J]. Plant Physiology, 2007, 143(2):866-875. [27] Rodriguez-Enfedaque A, Delmas E, Guillaume A, et al. zVAD-fmk upregulates caspase-9 cleavage and activity in etoposide-induced cell death of mouse embryonic fibroblasts[J]. Biochimica Et Biophysica Acta-Molecular Cell Research, 2012, 1823(8):1343-1352. [28] Abe H, Narusaka M, Shimoda T, et al. Analyses of plant resistance to thrips attack using Arabidopsis and chinese cabbage[J]. Plant Biology(Rockville), 2009, 2009(Suppl.):318-318. [29] Zhang T, Luan JB, Qi JF, et al. Begomovirus-whitefly mutualism is achieved through repression of plant defences by a virus pathogenicity factor[J]. Molecular Ecology, 2012, 21(5):1294-1304. [30] Lewsey MG, Murphy AM, Maclean D, et al. Disruption of two defensive signaling pathways by a viral RNA silencing suppressor[J]. Molecular Plant-Microbe Interactions, 2010, 23(7):835-845. [31] Chen L, Zhang L, Li D, et al. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(21):1963-1971. [32] Mandadi KK, Pyle JD, Scholthof KB. Comparative analysis of antiviral responses in Brachypodium distachyon and Setaria viridis reveals conserved and unique outcomes among C 3 and C 4 plant defenses[J]. Molecular Plant-Microbe Interactions, 2014, 27(11):1277-1290. [33] Love AJ, Laval VGC, Laird J, et al. Components of arabidopsis defense- and ethylene-signaling pathways regulate susceptibility to cauliflower mosaic virus by restricting long-distance movement [J]. Molecular Plant-Microbe Interactions, 2007, 20(6):659-670. [34] Casteel CL, De AM, Bak A, , et al. Disruption of ethylene responses by turnip mosaic virus mediates suppression of plant defense against the green peach aphid vector[J]. Plant Physiology, 2015, 169(1):209-218. [35] Moreno-Delafuente A, Garzo E, Moreno A, et al. A plant virus manipulates the behavior of its whitefly vector to enhance its transmission efficiency and spread[J]. PLoS One, 2013, 8(4):e61543-e61543. [36] Sade D, Shriki Oz, Cuadros-Inostroza Alvar, et al. Comparative metabolomics and transcriptomics of plant response to Tomato yellow leaf curl virus infection in resistant and susceptible tomato cultivars[J]. Metabolomics, 2015, 11(1):81-97 [37] Li Y, Cui H, Cui X, et al. The altered photosynthetic machinery during compatible virus infection[J]. Current Opinion in Virology, 2016, 17(4):19-24. [38] Hodge S, Powell Glen. Do plant viruses facilitate their aphid vectors by inducing symptoms that alter behavior and performance?[J]. Environmental Entomology, 2015, 37(6):1573-1581. [39] Isaacs R, Willis MA, Byrne DN. Modulation of whitefly take-off and flight orientation by wind speed and visual cues[J]. Physiological Entomology, 2002, 24(4):311-318. [40] Fred Tjallingii W, Garzo E, Fereres A. New structure in cell puncture activities by aphid stylets:a dual-mode EPG study[J]. Entomologia Experimentalis Et Applicata, 2010, 135(2):193-207. [41] Mclean DL, Kinsey MG. A technique for electronically recording aphid feeding and salivation[J]. Nature, 1964, 202(4939):1358-1359. [42] 何应琴, 陈文龙, 鲁卓越, 等. 褐色橘蚜在健康与CTV植株上的EPG比较[J]. 山地农业生物学报, 2014, 33(2):36-39. [43] Liu BM, Preisser EL, Chu D, et al. Multiple forms of vector manipulation by a plant-infecting virus:Bemisia tabaci and Tomato Yellow Leaf curl Virus[J]. Journal of Virology, 2013, 87(9):4929-4937. [44] Boquel S, Delayen C, Couty, et al. Modulation of aphid vector activity by potato virus Y on in vitro potato plants[J]. Plant Disease, 2011, 96(1):82-86. [45] Inbar M, Dan G. Plant-mediated interactions between whiteflies, herbivores, and natural enemies[J]. Annual Review of Entomology, 2008, 53(1):431-448. [46] Douglas AE. The microbial dimension in insect nutritional ecology[J]. Functional Ecology, 2009, 23(1):38-47. [47] Rodelo-Urrego M, Pagán I, González-Jara P, et al. Landscape heterogeneity shapes host-parasite interactions and results in apparent plant-virus codivergence[J]. Molecular Ecology, 2013, 22(8):2325-2340. [48] Casteel CL, Hansen AK, Walling LL, et al. Manipulation of plant defense responses by the tomato psyllid(Bactericerca cockerelli)and its associated endosymbiont Candidatus liberibacter psyllaurous[J]. PLoS One, 2012, 7(4):1-10. [49] Frago E, Dicke M, Godfray CJH. Insect symbionts as hidden players in insect-plant interactions[J]. Trends in Ecology & Evolution, 2012, 27(12):705-711. [50] Hohn T. Plant virus transmission from the insect point of view[J]. Proceedings of the National Academy of Sciences, 2007, 104(46):17905-17906. [51] 闫凤鸣. 烟粉虱的有效治理有赖于基础研究[J]. 中国农业科学, 2016, 49(13):2511-251. |
[1] | WEN Chang, LIU Chen, LU Shi-yun, XU Zhong-bing, AI Chao-fan, LIAO Han-peng, ZHOU Shun-gui. Biological Characteristics and Genome Analysis of a Novel Multidrug-resistant Shigella flexneri Phage [J]. Biotechnology Bulletin, 2022, 38(9): 127-135. |
[2] | LUO Xue-cong, AN Meng-nan, WU Yuan-hua, XIA Zi-hao. Applications of Recombinase Polymerase Amplification in Plant Virus Detection [J]. Biotechnology Bulletin, 2022, 38(2): 269-280. |
[3] | TIAN Li, LI Jun-jiao, DAI Xiao-feng, ZHANG Dan-dan, CHEN Jie-yin. From Functional Genes to Biological Characteristics:The Molecular Basis of Pathogenicity in Verticillium dahliae [J]. Biotechnology Bulletin, 2022, 38(1): 51-69. |
[4] | HUANG Jing-xiao, SHANG Jun-kang, CHEN Hui-min, SHEN Jia-min, LI Yuan-yuan, YU Yu-li, NI Jin-dong, LIN Bo-kun. Biological Characterization and Genome Analysis of a Lytic Phage Infecting Salmonella [J]. Biotechnology Bulletin, 2021, 37(6): 136-146. |
[5] | GONG Zheng, ZHANG Jun-jie, ZHONG Deng-ke. Biological Characteristics and Antibiotic Resistance of Erysipelothrix rhusiopathiae Isolated from East China [J]. Biotechnology Bulletin, 2020, 36(6): 174-182. |
[6] | WANG Ya-li, KANG Chun-xiao, YANG Chuan-zhen, WEI Yi-xuan, WANG Rui-fei, LI Ming-jun, YANG Qing-xiang. Isolation and Identification of a Root Rot Pathogen of Rehmannia glutinosa and Its Characterization [J]. Biotechnology Bulletin, 2020, 36(1): 37-44. |
[7] | HU Ya-ping, ZHOU Xu, CHEN Shui-fei, GE Xiao-min, DING Hui. Effects of Plant Virus Infection on Biological Factors and Their Interactions in the Ecosystem [J]. Biotechnology Bulletin, 2019, 35(10): 180-188. |
[8] | WANG Duan, YAO Xiang-mei, YE Jian. Research Progress on Multipartite Interactions Among Rhizosphere Microbe-Plants-Virus-Vector Insect [J]. Biotechnology Bulletin, 2018, 34(2): 54-65. |
[9] | XIE Jiu-yan, ZHAI Lei, SONG Zhen, YANG Yu-xin, CHENG Chi, YAO Su. The Fermentation Characteristics and Application in Chili Fermentation of Strain CICC 6287 [J]. Biotechnology Bulletin, 2018, 34(1): 223-229. |
[10] | CHI Hui-rong, MAO Bi-zeng. Research Advances on Plant Virus Detection and Virus-elimination Methods [J]. Biotechnology Bulletin, 2017, 33(8): 26-33. |
[11] | MA Yong-song, LI Xi, LI Zhen-zhen, WANG Pei-jie. Isolation and Identification of a Nickel-resistant and Petroleum Hydrocarbon Degrading Strain and Its Biological Characteristics [J]. Biotechnology Bulletin, 2017, 33(10): 169-177. |
[12] | LIU Xue-ting, YUAN Hong-yi, ZHANG Ming-hai, GUAN Wei-jun. Isolation and Biological Characterization of Duck Adipose-derived Mesenchymal Stem Cells [J]. Biotechnology Bulletin, 2016, 32(8): 122-128. |
[13] | MA Su-ri-gu-ga, PENG Hang, LIU Jia-jia, ZHANG Yi-ting, GUI Hua, LIU Peng-xia. Isolation Culture and Identification of Bone Marrow-derived Mesenchymal Stem Cells from Arbas Cashmere Goat [J]. Biotechnology Bulletin, 2016, 32(2): 203-210. |
[14] | Chen Long, Liang Zining, Zhu Hua. Research Advances in the Studies of Plant Entophytic [J]. Biotechnology Bulletin, 2015, 31(8): 30-34. |
[15] | Ruan Zheng, Wang Lianfang, Hu Xiuzhong, Wu Jianying, Zhang Sihua, Dai Changyun, Hua Juan, Xia Yu, Hu Xiaoming, Li Jie, Huang Haijun. Isolation,Culture and Characterization of Derived Cells from Neonatal Porcine Bone Marrow Mesenchymal Stem Cells [J]. Biotechnology Bulletin, 2015, 31(6): 170-176. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||