[1] Kerstiens G. Cuticular water permeability and its physiological significance[J] . J Exp Bot, 1996, 47(305):1813-1832. [2] Riederer M, Schreiber L. Protecting against water loss:analysis of thebarrier properties of plant cuticles[J] . J Exp Bot, 2001, 52:2023-2032. [3] Goodwin SM, Jenks M. Plant cuticle function as a barrierto water loss[M] //Jenks Ma, Hasegawa PM. Plant Abiotic Stress, Wiley-Blackwell, 2005:4-36. [4] Costaglioli P, Joubeè J, Garcia C, et al. Profiling candidate genes involved in wax biosynthesis in Arabidopsis thaliana by microarray analysis[J] . Biochim Biophys Acta, 2005, 1734:247-258. [5] Jenks MA, Tuttle HA, et al. Leaf epicuticular waxes of the eceriferu-mmutants in Arabidopsis[J] . Plant Physiol, 1995, 108:369-377. [6] Gan L, Wang XL, Cheng ZJ, et al. Wax crystal-sparse leaf 3 encoding a b-ketoacyl-CoA reductase is involved in cuticular wax biosynthesis in rice[J] . Plant Cell Rep, 2016, 35:1687-1698. [7] Reicosky DA, Hanover JW. Physiological effects of surface waxes. I. Light reflectance for glaucous and nonglaucous Picea pungens[J] . Plant Physiol, 1978, 62:101-104. [8] Kunst L, Samuels AL. Biosynthesis and secretion of plant cuticular wax[J] . Prog Lipid Res, 2003, 42:51-80. [9] Jenks MA, Joly RJ, PetersPJ, et al. Chemically induced cuticle mutation affecting epidermalconductance to water vapor and disease susceptibility in Sorghum bicolor(L. )moench[J] . Plant Physiol, 1994, 105:1239-1245. [10] Febrero A, Fernández S, Molina-Cano JL, et al. Yield, carboniso-tope discrimination, canopy reflectance and cuticular conductance of barleyisolines of differing glaucousness[J] . J Exp Bot, 1998, 49:1575-1581. [11] Saneoka H, Ogata S. Relationshipbetween water use efficiency and cuticular wax deposition in warm season forage crops grown underwater deficit conditions[J] . Soil Sci Plant Nutr, 1987, 33(3):439-448. [12] Goodwin SM, Rashotte AM, et al. Wax constituents on the inflores-cence stems of double eceriferum mutants in Arabidopsis reveal complex gene interactions[J] . Phytochemistry, 2005, 66:771-780. [13] Rowland O, Lee R, Franke R, et al. The CER3 wax biosynthetic gene from Arabidopsis thaliana is allelic to WAX2/YRE/FLP1[J] . FEBS Letters, 2007, 581:3538-3544. [14] Rashotte AM, Jenks MA, Feldmann KA. Cuticular waxes on eceriferum mutants of Arabidopsis thaliana[J] . Phytochemistry, 2001, 57:115-123. [15] Samuels L, De Bono A, Lam P, et al. Use of Arabidopsis eceriferum mutants to explore plant cuticle biosynthesis[J] . Journal of Visualized Experiments, 2008:1-2. [16] 周小云. 水稻叶表皮蜡质发育及蜡质相关转录因子基因OsWTF1和OsWTF2的克隆与鉴定[D] . 长沙:湖南农业大学, 2007. [17] Wan SY, Wu JX, Zhang ZG, et al. Activation tagging, an efficient tool for functional analysis of the rice genome[J] . Plant Mol Biol, 2009, 69:69-80. [18] Liu YG, Chen YL. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences[J] . Bio Techniques, 2007, 43(5):649-656. [19] Mao BG, Cheng ZJ, Lei C, et al. Wax crystal-sparse leaf2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax[J] . Planta, 2012, 235:39-52. [20] 严企松. 水稻抗逆性与育种[J] . 安徽农业科学, 1990, 43(1):9-14. [21] 陈秀晨, 熊冬金. 植物抗逆性研究进展[J] . 湖北农业科学, 2010, 49(9):2253-2256. [22] Shepherd T, Griffiths DW. The effects of stress on plant cuticular waxes[J] . New Phytologist, 2006, 171:469-499. |