[1] László I, Szoke é, Tyihák E. Relationship between abiotic stress and formaldehyde concentration in tissue culture of Datura innoxia Mill[J] . Plant Growth Regulation, 1998, 25(3):195-199. [2] Tyihák E, Blunden G, Yang MH, et al. Formaldehyde, as its dimedone adduct, from Ascophyllum nodosum[J] . Journal of Applied Phycology, 1996, 8(3):211-215. [3] 安雪, 李霞, 潘会堂, 等. 16种室内观赏植物对甲醛净化效果及生理生化变化[J] . 生态环境学报, 2010, 19(2):379-384. [4] Sun H, Zhang W, Tang L, et al. Investigation of the role of the calvin cycle and C1 metabolism during HCHO metabolism in gaseous HCHO-treated petunia under light and dark conditions using13C-NMR:formaldehyde metabolism in petunia hybrida[J] . Phytochemical Analysis, 2015, 26(3):226-235. [5] Shirazi AM, Muir PS. In vitro effects of formaldehyde on Douglas fir pollen[J] . Plant Cell & Environment, 1998, 21(21):341-346. [6] Saito Y, Nishio K, Yoshida Y, et al. Cytotoxic effect of formaldehyde with free radicals via increment of cellular reactive oxygen species[J] . Toxicology, 2005, 210(2-3):235-245. [7] 李惠民, 张莹, 贺军民. UV-B对拟南芥叶片不同来源H2O2的活化和气孔关闭的诱导[J] . 西北植物学报, 2013, 33(5):911-921. [8] Groppa MD, Benavides MP. Polyamines and abiotic stress:recent advances[J] . Amino Acids, 2008, 34(1):35-45. [9] Galston AW, Sawhney RK. Polyamines in plant physiology[J] . Plant Physiology, 1990, 94(2):406-410. [10] Pottosin I, Shabala S. Polyamines control of cation transport across plant membranes:implications for ion homeostasis and abiotic stress signaling[J] . Frontiers in Plant Science, 2014, 5(3):1-16. [11] Yi TH, Kao CH. Cadmium-induced oxidative damage in rice leaves is reduced by polyamines[J] . Plant & Soil, 2007, 291(1):27-37. [12] 刘强, 王庆成, 徐静, 等. 外源亚精胺和精胺对NaHCO3胁迫下南蛇藤抗氧化系统的影响[J] . 应用生态学报, 2009, 20(3):549-554. [13] Capell T, Phillips RL. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress[J] . Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(26):9909-9914. [14] Wen XP, Ban Y, Inoue H, et al. Aluminum tolerance in a spermidine synthase-overexpressing transgenic European pear is correlated with the enhanced level of spermidine via alleviating oxidative status[J] . Environmental & Experimental Botany, 2009, 66(3):471-478. [15] Nian HJ, Meng QC, Cheng Q, et al. The effects of overexpression of formaldehyde dehydrogenase gene from Brevibacillus brevis on the physiological characteristics of tobacco under formaldehyde stress[J] . Russian Journal of Plant Physiology, 2013, 60(6):764-769. [16] Nian HJ, Meng Q, Zhang W, et al. Overexpression of the formaldehyde dehydrogenase gene from Brevibacillus brevis to enhance formaldehyde tolerance and detoxification of tobacco[J] . Applied Biochemistry & Biotechnology, 2013, 169(1):170-180. [17] Zhou S, Xiao S, Xuan X, et al. Simultaneous functions of the installed DAS/DAK formaldehyde-assimilation pathway and the original formaldehyde metabolic pathways enhance the ability of transgenic geranium to purify gaseous formaldehyde polluted environment[J] . Plant Physiology & Biochemistry, 2015, 89:53-63. [18] 舒展, 张晓素, 陈娟, 等. 叶绿素含量测定的简化[J] . 植物生理学报, 2010, 46(4):399-402. [19] Schmedes A, H?lmer G. A new thiobarbituric acid(TBA)method for determining free malondialdehyde(MDA)and hydroperoxides selectively as a measure of lipid peroxidation. J Am Oil Chem Soc[J] . Journal of Oil & Fat Industries, 1989, 66(6):813-817. [20] Gay CA, Gebicki JM. Measurement of protein and lipid hydroperoxides in biological systems by the ferric-xylenol orange method[J] . Analytical Biochemistry, 2003, 315(1):29-35. [21] Nakano Y, Asada K. Hydrogen pceroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J] . Plant & Cell Physiology, 1981, 22(5):867-880. [22] 程鹏, 徐鹏飞, 范素杰, 等. 野生大豆接种大豆疫霉根腐病菌后过氧化物酶(POD)活性变化[J] . 大豆科学, 2013, 32(2):197-201. [23] 王群, 刘朝巍, 徐文娟. 紫外分光光度法测定玉米过氧化氢酶活性新进展[J] . 中国农学通报, 2016, 32(15):159-165. [24] Vuleta A, Jovanovi? SM, Tuci? B. Adaptive flexibility of enzymatic antioxidants SOD, APX and CAT to high light stress:The clonal perennial monocot Iris pumila as a study case[J] . Plant Physiology & Biochemistry, 2016, 100:166-173. [25] Kotzabasis K, Fotinou C, Roubelakis-Angelakis KA, et al. Polyamines in the photosynthetic apparatus[J] . Photosynthesis Research, 1993, 38(1):83-88. [26] Wang SS, Song ZB, Sun Z, et al. Effects of formaldehyde stress on physiological characteristics and gene expression associated with photosynthesis in Arabidopsis thaliana[J] . Plant Molecular Biology Reporter, 2012, 30(6):1291-1302. [27] Ray PD, Bo-Wen H, Yoshiaki T. Reactive oxygen species(ROS)homeostasis and redox regulation in cellular signaling[J] . Cellular Signalling, 2012, 24(5):981-990. [28] 孙慧群, 周升恩, 吴怀胜, 等. 气体甲醛胁迫对蚕豆保卫细胞中过氧化氢的积累和气孔导度及开度的影响[J] . 植物生理学报, 2015, 51(2):246-252. [29] 徐仰仓, 王静, 刘华, 等. 外源精胺对小麦幼苗抗氧化酶活性的促进作用[J] . 植物生理学报, 2001, 27(4):349-352. [30] Kamiab F, Talaie A, Khezri M, et al. Exogenous application of free polyamines enhance salt tolerance of pistachio(Pistacia vera L.)seedlings[J] . Plant Growth Regulation, 2014, 72(3):257-268. [31] Velikova V, Yordanov I, Edreva A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants:Protective role of exogenous polyamines[J] . Plant Science, 2000, 151(1):59-66. |