[1] Fujisawa M, Baba T, Nagamura Y, et al. The map-based sequence of the rice genome[J] . Nature, 2005, 436(7052):793-800. [2] Rahman MME, Ali ME, Ali MS, et al. Hot water thermal treatment for controlling seed-borne mycoflora of maize[J] . Int J Sustain Crop Prod, 2008, 3(5):5-9. [3] 贺转转, 邢佳佳, 陈玲, 等. 植物幼苗抗逆机制研究进展[J] . 生物技术通报, 2013(2):1-7. [4] 杜景红, 李北齐, 薛庆喜. NaCl浸种对水稻种子发芽的影响[J] . 中国农学通报, 2013, 29(3):33-35. [5] Walcott RR. Detection of seedborne pathogens[J] . Horttechnology, 2003, 13(1):40-47. [6] 彭卫福, 李昆太, 曾勇军. 水稻病害的微生物防治研究进展[J] . 江西农业大学学报, 2015(4):625-631. [7] 赵帅锋, 严百元, 胡选祥, 等. 不同浸种药剂和浓度对水稻发芽的安全性研究[J] . 中国植保导刊, 2016(8):63-65. [8] Binyam T. Review on seed health tests and detection methods of seedborne diseases[J] . Journal of Biology, Agriculture and Healthcare, 2015:176-184. [9] Rajput MA, Pathan MA, Lodhi AM, et al. Studies on seed-borne fungi of wheat in sindh province and their effect on seed germination[J] . Pakistan Journal of Botany, 2005, 37(1):181-185. [10] Niaz I, Dawar S. Detection of seed borne mycoflora in maize(Zea mays L. )[J] . Pakistan Journal of Botany, 2009, 41(1):443-451. [11] Du PV, Cuong ND, Nghiep HV, et al. Survey on seed borne fungi and its effects on grain quality of common rice cultivars in the Mekong Delta[J] . Omonrice, 2001, 9:107-113. [12] 周军, 周建明. 影响水稻种子发芽的主要因素及控制途径[J] . 安徽农业科学, 2014(12):3520-3523. [13] 邓接楼, 张高阳, 周木华, 等. 不同水稻药剂浸种对杂交水稻种子萌发及幼苗生长的影响[J] . 上饶师范学院学报, 2016(3):85-89. [14] Naveenkumar R, Muthukumar A, Sangeetha G, et al. Developing eco-friendly biofungicide for the management of major seed borne diseases of rice and assessing their physical stability and storage life[J] . Comptes Rendus Biologies, 2017, 340(4):214-225. [15] Kumar SN, Nambisan B. Antifungal activity of Diketopiperazines and Stilbenes against plant pathogenic fungi in vitro[J] . Applied Biochemistry and Biotechnology, 2014, 172(2):741-754. [16] O Callaghan M. Microbial inoculation of seed for improved crop performance:issues and opportunities[J] . Applied Microbiology and Biotechnology, 2016, 100(13):5729-5746. [17] Boukaew S, Prasertsan P. Factors affecting antifungal activity of Streptomyces philanthi RM-1-138 against Rhizoctonia solani[J] . World Journal of Microbiology and Biotechnology, 2014, 30(1):323-329. [18] 魏赛金, 王世强, 李昆太, 等. 链霉菌702对水稻种子萌发、幼苗生长及土壤微生物的影响[J] . 农业环境科学学报, 2014(5):853-861. [19] Xu B, Chen W, Wu Z, et al. A novel and effective Streptomyces sp. N2 against various phytopathogenic fungi[J] . Applied Biochemistry and Biotechnology, 2015, 177(6):1338-1347. [20] 李善家, 韩多红, 王恩军, 等. 外源甜菜碱对盐胁迫下黑果枸杞种子萌发和幼苗保护酶活性的影响[J] . 草业科学, 2016, 33(4):674-680. [21] 陈燕妮, 刘飞. 干旱胁迫对‘大同34号’谷子种子萌发和幼苗生长发育的影响[J] . 中国农学通报, 2016, 32(15):55-58. [22] 高俊凤. 植物生理学实验指导[M] . 北京:高等教育出版社, 2006. [23] 邹琦. 植物生理学实验指导[M] . 北京:中国农业出版社, 2003. [24] 张志良, 翟伟菁. 植物生理学实验指导[M] . 第3版. 北京:高等教育出版社, 2003. [25] 隋丽, 徐文静, 杜茜, 等. 放线菌769发酵液对水稻体内主要防御酶活性的影响[J] . 吉林农业大学学报, 2009(4):382-384. [26] 何宏艳, 雷梦梦, 吴玉霞, 等. 药剂浸种对辣椒种子萌发和幼苗生理特性的影响[J] . 种子世界, 2015(11):34-37. [27] 郑敏娜, 李荫藩, 梁秀芝, 等. 水分胁迫对豌豆种子萌发和幼苗生长发育的影响[J] . 山西农业科学, 2012(3):212-216. [28] 赵玉锦, 王台. 水稻种子萌发过程中α-淀粉酶与萌发速率关系的分析[J] . 植物学通报, 2001(2):226-230. [29] 柯贞进, 尹美强, 温银元, 等. 干旱胁迫下聚丙烯酰胺浸种对谷子种子萌发及幼苗期抗旱性的影响[J] . 核农学报, 2015(3):563-570. [30] 陈蕾太, 孙爱清, 杨敏, 等. 逆境条件下小麦种子活力与种子萌发相关酶活性及其基因表达的关系[J] . 应用生态学报, 2017(02):609-619. [31] 赵红, 李文华. 废电池浸出液对水稻种子萌发及幼苗渗透调节物质含量的影响[J] . 河南农业科学, 2017(1):26-29. [32] 李丽杰, 顾万荣, 李从锋, 等. DCPTA对低温下玉米叶片抗氧化系统及渗透调节物质的影响[J] . 植物生理学报, 2016 |