[1] Araki H, Kawabata A, Kuroda R, et al. Compositions for preventing and treating digestive organs diseases:US, US7550437[P] . 2009. [2] Tang YH, Wang JY, Hu HH, et al. Analysis of species-dependent hydrolysis and protein binding of esmolol enantiomers[J] . Journal of Pharmaceutical Analysis, 2012, 2(3):220-225. [3] Kawai S, Nakata K, Ichizawa H, et al. 3-(4-Hydroxyphenyl)propionic acid is involved in the biosynthesis of myricanol in Myrica rubra[J] . Journal of Wood Science, 2012, 56(2):148-153. [4] Yahyaa M, Davidovich-Rikanati R, Eyal Y, et al. Identification and characterization of UDP-glucose:Phloretin 4'-O-glycosyltransferase from Malus x domestica Borkh[J] . Phytochemistry, 2016, 130:47-55. [5] Croitoru R, Fi?ig?u F, Broek LAMVD, et al. Biocatalytic acylation of sugar alcohols by 3-(4-hydroxyphenyl)propionic acid[J] . Process Biochemistry, 2012, 47(12):1894-1902. [6] 管惠娟, 张雪, 屠凤娟, 等. 铁皮石斛化学成分的研究[J] . 中草药, 2009, 40(12):1873-1876. [7] 黄洋, 邵慧凯, 李康, 等. 小叶榕叶抗炎成分分析及活性评价[J] . 中成药, 2014, 36(6):1227-1233. [8] 张明星, 盛喆. 对羟基苯丙酸的制备与应用[J] . 精细与专用化学品, 2010, 18(9):48-49. [9] 李晓林, 周威, 庄以彬, 等. 3, 4-二羟基扁桃酸在大肠杆菌中的生物合成[J] . 生物技术通报, 2017, 33(1):135-140. [10] Jing S, Lin Y, Shen X, et al. Aerobic biosynthesis of hydrocinnamic acids in Escherichia coli, with a strictly oxygen-sensitive enoate reductase[J] . Metabolic Engineering, 2016, 35:75-82. [11] Hong KK, Nielsen J. Metabolic engineering of Saccharomyces cerevisiae:a key cell factory platform for future biorefneries[J] . Cellular & Molecular Life Sciences Cmls, 2012, 69(16):2671-2690. [12] Gosch C, Halbwirth H, Stich K. Phloridzin:biosynthesis, distribution and physiological relevance in plants[J] . Phytochemistry, 2010, 71(8-9):838-843. [13] Jiang J, Bi H, Zhuang Y, et al. Engineered synthesis of rosmarinic acid in Escherichia coli, resulting production of a new intermediate, caffeoyl-phenyllactate[J] . Biotechnology Letters, 2016, 38(1):81-88. [14] Jendresen CB, Stahlhut SG, Li M, et al. Novel highly active and specific tyrosine ammonia-lyases from diverse origins enable enhanced production of aromatic compounds in bacteria and yeast[J] . Applied & Environmental Microbiology, 2015, 81(13):4458-76. [15] Rodriguez A, Kildegaard KR, Li M, et al. Establishment of a yeast platform strain for production of p- coumaric acid through metabolic engineering of aromatic amino acid biosynthesis[J] . Metabolic Engineering, 2015, 31:181. [16] Sepp D. Kohlwein, Sandra E, et al. Tsc13p is required for fatty acid elongation and localizes to a novel structure at the nuclear-vacuolar interface in Saccharomyces cerevisiae[J] . 2001, 21(1):109-125. [17] Eichenberger M, Lehka BJ, Folly C, et al. Metabolic engineering of Saccharomyces cerevisiae for de novo production of dihydrochalc-ones with known antioxidant, antidiabetic, and sweet tasting prope-rties[J] . Metabolic Engineering, 2016. [18] Gietz RD, Woods RA. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method[J] . Methods in enzymology, 2002, 350(350):87-96. [19] Beekwilder J, Wolswinkel R, Jonker H, et al. Production of resveratrol in recombinant microorganisms[J] . Applied & Environmental Microbiology, 2006, 72(8):5670-5672. [20] Kal AJ, Hettema EH, Van dBM, et al. In silicio search for genes encoding peroxisomal proteins in Saccharomyces cerevisiae[J] . Cell biochemistry and biophysics, 2000, 32(1):1-8. [21] Maeda I, Delessert S, Hasegawa S, et al. The peroxisomal Acyl-CoA thioesterase Pte1p from Saccharomyces cerevisiae is required for efficient degradation of short straight chain and branched chain fatty acids[J] . Journal of Biological Chemistry, 2006, 281(17):11729-11735. |