[1] Peumans WJ, Van Damme EJ. Lectins as plant defense proteins[J]. Plant physiology, 1995, 109(2):347-352. [2] Barbosa PSF, Martins AMC, Toyama MH, et al. Purification and biological effects of a C-type lectin isolated from Bothrops moojeni[J]. Journal of Venomous Animals and Toxins including Tropical Diseases, 2010, 16(3):493-504. [3] Nunes ES, de Souza MA, Vaz AF, et al. Purification of a lectin with antibacterial activity from Bothrops leucurus snake venom[J]. Comparative Biochemistry & Physiology Part B Biochemistry & Molecular Biology, 2011, 159(1):57-63. [4] Soares GDSF, Assreuy AMS, Gadelha CADA, et al. Purification and biological activities of Abelmoschus esculentus, Seed Lectin[J]. The Protein Journal, 2012, 31(8):674-680. [5] Liu F, Tang T, Sun L, et al. Transcriptomic analysis of the housefly(Musca domestica)larva using massively parallel pyrosequencing[J]. Mol Biol Rep, 2012, 39(2):1927-1934. [6] Utarabhand P, Rittidach W, Paijit N. Bacterial agglutination by sialic acid-specific lectin in the hemolymph of the banana shrimp, Penaeus(Fenneropenaeus)merguiensis[J]. Sci Asia, 2007, 33:41-46. [7] Zelensky AN, Gready JE. The C-type lectin-like domain superfamily[J]. Febs Journal, 2005, 272(24):6179-6217. [8] Drickamer K. C-type lectin-like domains[J]. Current Opinion in Structural Biology, 1999, 9(5):585-590. [9] Drickamer K. Evolution of Ca 2+ -dependent animal lectins[J]. Progress in Nucleic Acid Research and Molecular Biology, 1993, 45:207-232. [10] Graham LM, Gupta V, Schafer G, et al. The C-type lectin receptor CLECSF8(CLEC4D)is expressed by myeloid cells and triggers cellular activation through Syk kinase[J]. J Biol Chem, 2012, 287(31):25964-25974. [11] Dambuza IM, Brown GD. C-type lectins in immunity:recent developments[J]. Current Opinion in Immunology, 2015, 32:21-27. [12] Greenberg B. Flies and disease[J]. Scientific American, 1965, 213:92-99. [13] Zhang Y, Wu S, Lv J, et al. Peste des petits ruminants virus exploits cellular autophagy machinery for replication[J]. Virology, 2013, 437(1):28-38. [14] Ogston A. On abscesses[J]. Review of Infectious Diseases, 1984, 6(1):122-128. [15] Uhlemann AC. Community-Associated Methicillin-Resistant Staphylococcus aureus Case Studies[J]. Methods in Molecular Biology, 2014, 1085:25-69. [16] Ferrer M, Difrancesco LF, Liapikou A, et al. Polymicrobial intensive care unit-acquired pneumonia:prevalence, microbiology and outcome[J]. Critical Care, 2015, 19(1):450 [17] Wardenburg JB. Panton-valentine leukocidin is not a virulence determinant in murine models of community-associated methicillin-resistant Staphylococcus aureus disease[J]. Journal of Infectious Diseases, 2008, 198(8):1166-1170. [18] Fast DJ, Schlievert PM, Nelson RD. Toxic shock syndrome-associated staphylococcal and streptococcal pyrogenic toxins are potent inducers of tumor necrosis factor production[J]. Infection & Immunity, 1989, 57(1):291-294. [19] Gillet Y, Issartel B, Vanhems P, et al. Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients[J]. Lancet(London, England), 2002, 359(9308):753-759. [20] Voyich JM, Otto M, Mathema B, et al. Is Panton-Valentine leukocidin the major virulence determinant in community-associated methicillin-resistant Staphylococcus aureus disease[J]? Journal of Infectious Diseases, 2006, 194(12):1761-1770. [21] Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses[J]. Clinical Microbiology Reviews, 2009, 22(2):240-273. [22] Nau R, Eiffert H. Modulation of release of proinflammatory bacterial compounds by antibacterials:potential impact on course of inflammation and outcome in sepsis and meningitis[J]. Clinical Microbiology Reviews, 2002, 15(1):95-110. [23] Mukhin AG, Ivanova SA, Knoblach SM, et al. New in vitro model of traumatic neuronal injury:evaluation of secondary injury and glutamate receptor-mediated neurotoxicity[J]. Journal of Neurotrauma, 1997, 14(9):651-663. [24] Aribi M, Meziane W, Habi S, et al. Macrophage bactericidal activities against Staphylococcus aureus are enhanced in vivo by selenium supplementation in a dose-dependent manner[J]. PLoS One, 2015, 10(9):e0135515. [25] Porcherie A, Cunha P, Trotereau A, et al. Repertoire of Escherichia coli agonists sensed by innate immunity receptors of the bovine udder and mammary epithelial cells[J]. Veterinary Research, 2012, 43(1):14. [26] Zhu F, Yue W, Wang Y. The nuclear factor kappa B(NF-κB)activation is required for phagocytosis of Staphylococcus aureus, by RAW 264. 7 cells[J]. Experimental Cell Res, 2014, 327 (2):256-263. [27] Larsen GL, Henson PM. Mediators of inflammation[J]. Annual Review of Immunology, 1983, 1(1):335-359. [28] Murdaca G, Spanò F, Contatore M, et al. Infection risk associated with anti-TNF-α agents:a review[J]. Expert Opinion on Drug Safety, 2015, 14(4):1-12. [29] Koca SS, Bahcecioglu IH, Poyrazoglu OK, et al. The Treatment with antibody of TNF-α reduces the inflammation, necrosis and fibrosis in the non-alcoholic steatohepatitis induced by methionine- and choline-deficient diet[J]. Inflammation, 2008, 31(2):91-98. [30] Miller LS, Pietras EM, Uricchio LH, et al. Inflammasome-mediated production of IL-1beta is required for neutrophil recruitment against Staphylococcus aureus in vivo[J]. Journal of Immunology, 2007, 179(10):6933-6942. [31] Pires AF, Rodrigues NVFC, Soares PMG, et al. A novel N-acetyl-glucosamine lectin of Lonchocarpus araripensis attenuates acute cellular inflammation in mice[J]. Inflammation Research, 2016, 65(1):43-52. [32] Shan M, Gentile M, Yeiser JR, et al. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals[J]. Science, 2013, 342(6157):447-453. [33] Freitas RS, do Val DR, Fernandes MEF, et al. Lectin from Abelmoschus esculentus reduces zymosan-induced temporomandibular joint inflammatory hypernociception in rats via heme oxygenase-1 pathway integrity and tnf-α and il-1β suppression[J]. International Immunopharmacology, 2016, 38:313-323. [34] Jin H, Yang X, Liu K, et al. Effects of a novel peptide derived from human thrombomodulin on endotoxin-induced uveitis in vitro and in vivo[J]. FEBS letters, 2011, 585(21):3457-3464. [35] Matsumoto T, Takahashi N, Kojima T, et al. Soluble Siglec-9 suppresses arthritis in a collagen-induced arthritis mouse model and inhibits M1 activation of RAW264. 7 macrophages[J]. Arthritis Research & Therapy, 2016, 18(1):133. |