Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (1): 26-32.doi: 10.13560/j.cnki.biotech.bull.1985.2017-0636
Previous Articles Next Articles
XU Ke-heng, ZHANG Yun-tong, ZHANG Ying, WANG Bin, WANG Fa-wei, LI Hai-yan
Received:
2017-07-28
Online:
2018-01-26
Published:
2018-01-22
XU Ke-heng, ZHANG Yun-tong, ZHANG Ying, WANG Bin, WANG Fa-wei, LI Hai-yan. Research Advances on the F-box Gene Family in Plants[J]. Biotechnology Bulletin, 2018, 34(1): 26-32.
[1] Fahad S, Bajwa AA, Nazir U, et al. Crop production under drought and heat stress:plant responses and management options[J]. Frontiers in Plant Science, 2017, 01147. [2] Duplan V, Rivas S. E3 ubiquitin-ligases and their target proteins during the regulation of plant innate immunity[J]. Frontiers in Plant Science, 2014, 00042. [3] Kumar A, Paietta JV. The sulfur controller-2 negative regulatory gene of Neurospora crassa encodes a protein with beta-transducin repeats[J]. Proc Natl Acad Sci USA, 1995, 92(8):3343-3347. [4] Bai C, Sen P, Hofmann K, et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box[J]. Cell, 1996, 86(2):263-274. [5] Kipreos ET, Pagano M. The F-box protein family[J]. Genome Biology, 2000, 1(5):1-7. [6] Song JB, Wang YX, Li HB, et al. The F-box family genes as key elements in response to salt, heavy mental, and drought stresses in Medicago truncatula[J]. Functional & Integrative Genomics, 2015, 15(4):495-507. [7] Jia Q, Xiao ZX, Wong FL, et al. Genome-wide analyses of the soybean F-box gene family in response to salt stress[J]. Int J Mol Sci, 2017, 18(4):818-835. [8] Gagne JM, Downes BP, Shiu SH, et al. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis[J]. Proc Natl Acad Sci, 2002, 99(17):11519-11524. [9] Jain M, Nijhawan A, Arora R, et al. F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress[J]. Plant Physiology, 2007, 143(4):1467-1483. [10] Cui HR, Zhang ZR, Lv W, et al. Genome-wide characterization and analysis of F-box protein-encoding genes in the Malus domestica genome[J]. Mol Genet Genomics, 2015, 290(4):1435-1446. [11] Jia F, Wu B, Li H, et al. Genome-wide identification and characterisation of F-box family in maize[J]. Mol Genet Genomics, 2013, 288(11):559-577. [12] Gupta S, Garg V, Kant C, et al. Genome-wide survey and expression analysis of F-box genes in chickpea[J]. BMC Genomics, 2015, 16(1):1-15. [13] Wang GM, Yin H, Qiao X, et al. F-box genes:Genome-wide expansion, evolution and their contribution to pollen growth in pear(Pyrus bretschneideri)[J]. Plant Science, 2016, 253:164-175. [14] Baute J, Polyn S, De BJ, et al. F-Box Protein FBX92 Affects Leaf size in Arabidopsis thaliana[J]. Plant & Cell Physiology, 2017, 58(5):962-975. [15] Zhao Z, Zhang G, Zhou S, et al. The improvement of salt tolerance in transgenic tobacco by overexpression of wheat F-box gene TaFBA1[J]. Plant Science, 2017, 259:71-85. [16] Stefanowicz K, Lannoo N, Zhao Y, et al. Glycan-binding F-box protein from Arabidopsis thaliana protects plants from Pseudomonas syringae infection[J]. BMC Plant Biol, 2016, 16(1):213-226. [17] Lechner E, Achard P, Vansiri A, et al. F-box proteins everywhere [J]. Curr Opin Plant Biol, 2006, 9(6):631-638. [18] 王秀燕, 孙莉萍, 张建锋, 等. F-box蛋白家族及其功能[J]. 生命科学, 2008(5):807-811. [19] Kipreos E, Pagano M. The F-box protein family[J]. Genome Biology, 2000, 1(5):1-7. [20] Xue F, Cooley L. Kelch encodes a component of intercellular bridges in Drosophila egg chambers[J]. Cell, 1993, 72(5):681-693. [21] Rogel MR, Jaitovich A, Ridge KM. The role of the ubiquitin proteasome pathway in keratin intermediate filament protein degradation[J]. Proc Ame Thorac Soc, 2010, 7(1):71-76. [22] Shang F, Taylor A. Roles for the ubiquitin-proteasome pathway in protein quality control and signaling in the retina:implications in the pathogenesis of age-related macular degeneration[J]. Molecular Aspects of Medicine, 2012, 33(4):446-466. [23] 李杨, 李栋. 泛素连接酶-底物选择关系的研究进展[J]. 生物技术通报, 2015, 31(1):11-20. [24] Wang F, Deng XW. Plant ubiquitin-proteasome pathway and its role in gibberellin signaling[J]. Cell Res, 2011, 9:1286-1294. [25] Buckley DL, Crews CM. Small-molecule control of intracellular protein levels through modulation of the ubiquitin proteasome system[J]. Angew Chem Int Ed Engl, 2014, 9:2312-2330. [26] Sang Y, Yan F, Ren X. The role and mechanism of CRL4 E3 ubiquitin ligase in cancer and its potential therapy implications[J]. Oncotarget, 2015, 6(40):42590-42602. [27] Yu F, Wu Y, Xie Q. Ubiquitin-proteasome system in ABA signaling:from perception to action[J]. Mol Plant, 2016, 9(1):21-23. [28] Yee D, Goring DR. The diversity of plant U-box E3 ubiquitin ligases:from upstream activators to downstream target substrates[J]. J Exp Bot, 2009, 60(4):1109-1121. [29] Kawakami T, Chiba T, et al. NEDD8 recruits E2-ubiquitin to SCF E3 ligase[J]. EMBO J, 2001, 20(15):4003-4012. [30] Chen L, Hellmann H. Plant E3 ligases:flexible enzymes in a sessile world[J]. Mol Plant, 2013, 6(5):1388-1404. [31] Meng X, Wang C, Rahman SU, et al. Genome-wide identification and evolution of HECT genes in soybean[J]. Int J Mol Sci, 2015, 16(4):8517-8535. [32] Liu Y, Nakatsukasa K, et al. Non-SCF-type F-box protein Roy1/Ymr258c interacts with a Rab5-like GTPase Ypt52 and inhibits Ypt52 function[J]. Mol Biol Cell, 2011, 22(9):1575-1584. [33] Hermand D. F-box proteins:more than baits for the SCF?[J]. Cell Division, 2006, 1(1):30-36. [34] Kim DH, Zhang W, Koepp DM. The Hect domain E3 ligase Tom1 and the F-box protein Dia2 control Cdc6 degradation in G1 phase[J]. J Biol Chem, 2012, 287(53):44212-44220. [35] Levin JZ, Meyerowitz EM. UFO:an Arabidopsis gene involved in both floral meristem and floral organ development[J]. Plant Cell, 1995, 7(5):529-548. [36] Ni W, Xie D, Hobbie L, et al. Regulation of flower development in Arabidopsis by SCF complexes[J]. Plant Physiology, 2004, 134(4):1574-1585. [37] Zhao D, Yu Q, Chen M, et al. The ASK1 gene regulates B function gene expression in cooperation with UFO and LEAFY in Arabidopsis[J]. Development, 2001, 128(14):2735-2746. [38] He R, Li X, Zhong M, et al. A photo-responsive F-box protein FOF2 regulates floral initiation by promoting FLC expression in Arabidopsis[J]. Plant Journal, 2017, 13607. [39] Liu Q, Guo X, Chen G, et al. Silencing SlGID2, a putative F-box protein gene, generates a dwarf plant and dark-green leaves in tomato[J]. Plant Physiol Biochem, 2016, 109:491-501. [40] Chen Y, Xu Y, Luo W, et al. The F-box protein OsFBK12 targets OsSAMS1 for degradation and affects pleiotropic phenotypes, including leaf senescence, in rice[J]. Plant Physiology, 2013, 163(4):1673-1685. [41] Hong MJ, Kim DY, Kang SY, et al. Wheat F-box protein recruits proteins and regulates their abundance during wheat spike development[J]. Mol Biol Rep, 2012, 39(10):9681-9696. [42] Sarkar T, Mogili T, Sivaprasad V. Improvement of abiotic stress adaptive traits in mulberry(Morus spp. ):an update on biotechnological interventions[J]. Biotech, 2017, 7(3):214-228. [43] Nawaz G, Kang H. Chloroplast- or mitochondria-targeted DEAD-Box RNA helicases play essential roles in organellar RNA metabolism and abiotic stress responses[J]. Frontiers in Plant Science, 2017, 8, 00871. [44] Zhou S, Sun X, Yin S, et al. The role of the F-box gene TaFBA1 from wheat(Triticum aestivum L.)in drought tolerance[J]. Plant Physiol Biochem, 2014, 84:213-223. [45] Zhou SM, Kong XZ, Kang HH, et al. The involvement of wheat F-box protein gene TaFBA1 in the oxidative stress tolerance of plants[J]. PLoS One, 2015, 10(4):e0122117. [46] Kong X, Zhou S, Yin S, et al. Stress-inducible expression of an F-box gene TaFBA1 from wheat enhanced the drought tolerance in transgenic tobacco plants without impacting growth and development[J]. Frontiers in Plant Science, 2016, 7:01295. [47] Li Y, Jia F, Yu Y, et al. The SCF E3 ligase AtPP2-B11 plays a negative role in response to drought stress in Arabidopsis[J]. Plant Molecular Biology Reporter, 2014, 32(5):943-956. [48] Jia F, Wang C, Huang J, et al. SCF E3 ligase PP2-B11 plays a positive role in response to salt stress in Arabidopsis[J]. J Exp Bot, 2015, 66(15):4683-4697. [49] Nelson DC, Smith SM. F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2011, 108(21):8897-8902. [50] Shen H, Zhu L, Bu QY, et al. MAX2 affects multiple hormones to promote photomorphogenesis[J]. Mol Plant, 2012, 3:750-762. [51] Bu Q, Lv T, Shen H, et al. Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis[J]. Plant Physiology, 2014, 164(1):424-439. [52] Ha CV, Leyva-González MA, Osakabe Y, et al. Positive regulatory role of strigolactone in plant responses to drought and salt stress[J]. Proc Natl Acad Sci USA, 2014, 111(2):851-856. [53] An JP, Li R, Qu FJ, et al. Apple F-Box protein MdMAX2 regulates plant photomorphogenesis and stress response[J]. Frontiers in Plant Science, 2016, 7, 01685. [54] Melotto M, Underwood W, Koczan J, et al. Plant stomata function in innate immunity against bacterial invasion[J]. Cell, 2006, 126:969-980. [55] Piisilä M, Keceli MA, Brader G, et al. The F-box protein MAX2 contributes to resistance to bacterial phytopathogens in Arabidopsis thaliana[J]. BMC Plant Biology, 2015, 15(1):53-70. [56] Cao Y, Yang Y, Zhang H, et al. Overexpression of a rice defense-related F-box protein gene OsDRF1 in tobacco improves disease resistance through potentiation of defense gene expression[J]. Physiol Plant, 2008, 134(3):440-452. [57] Paquis S, Mazeyrat-Gourbeyre F, Fernandez O, et al. Characteriza-tion of a F-box gene up-regulated by phytohormones and upon biotic and abiotic stresses in grapevine[J]. Mol Biol Rep, 2011, 38(5):3327-3337. |
[1] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[2] | LIU Wen-jin, MA Rui, LIU Sheng-yan, YANG Jiang-wei, ZHANG Ning, SI Huai-jun. Cloning of StCIPK11 Gene and Analysis of Its Response to Drought Stress in Solanum tuberosum [J]. Biotechnology Bulletin, 2023, 39(9): 147-155. |
[3] | HAN Hao-zhang, ZHANG Li-hua, LI Su-hua, ZHAO Rong, WANG Fang, WANG Xiao-li. Construction of cDNA Library of Cinnamomun bodinieri Induced by Saline-alkali Stress and Screening of CbP5CS Upstream Regulators [J]. Biotechnology Bulletin, 2023, 39(9): 236-245. |
[4] | KANG Ling-yun, HAN Lu-lu, HAN De-ping, CHEN Jian-sheng, GAN Han-ling, XING Kai, MA You-ji, CUI Kai. Effect of Melatonin on Protecting the Jejunum Mucosal Epithelial Cells from Oxidative Stress Damage [J]. Biotechnology Bulletin, 2023, 39(9): 291-299. |
[5] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[6] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[7] | HU Hai-lin, XU Li, LI Xiao-xu, WANG Chen-can, MEI Man, DING Wen-jing, ZHAO Yuan-yuan. Advances in the Regulation of Plant Growth, Development and Stress Physiology by Small Peptide Hormones [J]. Biotechnology Bulletin, 2023, 39(7): 13-25. |
[8] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[9] | WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum [J]. Biotechnology Bulletin, 2023, 39(7): 160-172. |
[10] | YU Hui, WANG Jing, LIANG Xin-xin, XIN Ya-ping, ZHOU Jun, ZHAO Hui-jun. Isolation and Functional Verification of Genes Responding to Iron and Cadmium Stresses in Lycium barbarum [J]. Biotechnology Bulletin, 2023, 39(7): 195-205. |
[11] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[12] | DING Kai-xin, WANG Li-chun, TIAN Guo-kui, WANG Hai-yan, LI Feng-yun, PAN Yang, PANG Ze, SHAN Ying. Research Progress in Uniconazole Alleviating Plant Drought Damage [J]. Biotechnology Bulletin, 2023, 39(6): 1-11. |
[13] | KONG De-zhen, DUAN Zhen-yu, WANG Gang, ZHANG Xin, XI Lin-qiao. Physiological Characteristics and Transcriptome Analysis of Sorghum bicolor × S. Sudanense Seedlings Under Salt-alkali Stress [J]. Biotechnology Bulletin, 2023, 39(6): 199-207. |
[14] | ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein [J]. Biotechnology Bulletin, 2023, 39(6): 208-216. |
[15] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||