Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (3): 31-38.doi: 10.13560/j.cnki.biotech.bull.1985.2017-0814
Previous Articles Next Articles
WANG Hao-qian1, CHEN Rui2, LI Xia-ying1, WANG Meng-yu3, LIU Peng-cheng1
Received:
2017-09-26
Online:
2018-03-20
Published:
2018-04-10
WANG Hao-qian, CHEN Rui, LI Xia-ying, WANG Meng-yu, LIU Peng-cheng. Research Progress on the Testing Technologies for Composition in Genetically Modified Products[J]. Biotechnology Bulletin, 2018, 34(3): 31-38.
[1] James C. 2016年全球生物技术/转基因作物商业化发展态势[J]. 中国生物工程杂志, 2017, 37(4):1-8. [2] 蔡军, 李慧, 胡梦龙, 等. 转基因成分分析检测技术研究进展[J]. 食品安全质量检测学报, 2016, 7(2):706-714. [3] Jiang L, Yang L, Rao J, et al. Development and in-house validation of the event-specific qualitative and quantitative PCR detection methods for genetically modified cotton MON15985[J]. Journal of the Science of Food & Agriculture, 2010, 90(3):402-408. [4]Wu Y, Wang Y, Li J, et al. Development of a general method for detection and quantification of the P35S promoter based on assessment of existing methods[J]. Scientific Reports, 2014, 4(2):7358. [5]Ballari RV, Martin A, Gowda LR. Detection and identification of genetically modified EE-1 brinjal(Solanum melongena)by single, multiplex and SYBR? realtime PCR[J]. Journal of the science of food and agriculture. 2013, 93(2):340-347. [6]Querci M, Bulcke MVD, Z?El J, et al. New approaches in GMO detection[J]. Analytical & Bioanalytical Chemistry, 2010, 396(6):1991-2002. [7]Oliveira CA, Kommers CM, Lehmann FK, et al. Detection of genetically modified maize in processed products, dry grains, and corn ears intended for fresh consumption in South Brazil[J]. Genetics & Molecular Research, 2016, 15(4):8818-8827. [8]Alsalameen F, Kumar V, Alaqeel H, et al. Detection of genetically modified DNA in fresh and processed foods sold in Kuwait[J]. Gm Crops & Food, 2012, 3(4):283. [9]Rabiei M, Mehdizadeh M, Rastegar H, et al. Detection of genetically modified maize in processed foods sold commercially in iran by qualitative PCR[J]. Iranian Journal of Pharmaceutical Research, 2013, 12(1):25-30. [10]Elsanhoty RM, Al-Turki A, Ramadan MF. Prevalence of genetically modified rice, maize, and soy in Saudi food products[J]. Applied Biochemistry and Biotechnology. 2013, 171(4):883-899. [11] Alhmoud N, Alhusseini N, Ibrahimalobaide MA, et al. Unconventi-onal P-35S sequence identified in genetically modified maize[J]. Gm Crops Food, 2014, 5(1):58. [12]Nikoli? Z, Vasiljevi? I, Zdjelar G, et al. Detection of genetically modified soybean in crude soybean oil[J]. Food Chemistry, 2014, 145(7):1072-1075. [13]Alasaad N, Alzubi H, Kader AA. Data in support of the detection of genetically modified organisms(GMOs)in food and feed samples[J]. Data in Brief, 2016, 7:243-252. [14]Datukishvili N, Kutateladze T, Gabriadze I, et al. New multiplex PCR methods for rapid screening of genetically modified organisms in foods[J]. Frontiers in Microbiology, 2015, 6(6):757. [15]Harikai N, Saito S, Abe M, et al. Optical detection of specific genes for genetically modified soybean and maize using multiplex PCR coupled with primer extension on a plastic plate[J]. Bioscience Biotechnology & Biochemistry, 2009, 73(8):1886-1889. [16]Mano J, Oguchi T, Akiyama H, et al. Simultaneous detection of recombinant DNA segments introduced into genetically modified crops with multiplex ligase chain reaction coupled with multiplex polymerase chain reaction[J]. Journal of Agricultural & Food Chemistry, 2009, 57(7):2640-2646. [17]Patwardhan S, Dasari S, Bhagavatula K, et al. Simultaneous detection of genetically modified organisms in a mixture by multiplex PCR-chip capillary electrophoresis[J]. Journal of AOAC International, 2015, 98(5):1366-1374. [18]敖金霞, 高学军, 于艳波, 等. 转基因大豆、玉米、水稻深加工产品的五重巢式PCR技术检测[J]. 中国农业大学学报, 2010, 15(2):93-99. [19]闫伟, 李葱葱, 夏蔚, 等. 应用单管巢式和半巢式PCR检测转基因玉米MON89034[J]. 玉米科学, 2016(4):56-60. [20]Yang L, Xu S, Pan A, et al. Event specific qualitative and quantitative polymerase chain reaction detection of genetically modified MON863 maize based on the 5’-transgene integration sequence[J]. Journal of Agricultural and Food Chemistry. 2005, 53(24):9312-9318. [21]Holck A, Va?tilingom M, Didierjean L, et al. 5'-Nuclease PCR for quantitative event-specific detection of the genetically modified Mon810 MaisGard maize[J]. European Food Research & Technology, 2002, 214(5):449-454. [22]金芜军, 贾士荣, 彭于发. 不同国家和地区转基因产品标识管理政策的比较[J]. 农业生物技术学报, 2004(1):1-7. [23]杜智欣, 焦悦, 张亮亮, 等. 转基因成分定量检测技术研究进展[J]. 食品工业科技, 2017, 38(10):379-384. [24]邓汉超, 尹长城, 刘国振, 等. 转基因植物核酸成分检测技术研究进展[J]. 中国生物工程杂志, 2011, 31(1):86-95. [25]Garcíaca?as V, Cifuentes A, González R. Quantitation of transgenic Bt event-176 maize using double quantitative competitive polymerase chain reaction and capillary gel electrophoresis laser-induced fluorescence[J]. Analytical Chemistry, 2004, 76(8):2306-2313. [26]Mavropoulou AK, Theodora K, Ioannou PC, et al. High-throughput double quantitative competitive polymerase chain reaction for determination of genetically modified organisms[J]. Anal Chem, 2005, 77(15):4785-4791. [27]陈锐, 朱珠, 兰青阔, 等. 转基因检测技术与标准物质研究概述[J]. 天津农业科学, 2014, 20(3):10-14. [28]Venturelli GL, Brod FC, Rossi GB, et al. A specific endogenous reference for genetically modified common bean(Phaseolus vulgaris L.)DNA quantification by real-time PCR targeting lectin gene[J]. Molecular Biotechnology, 2014, 56(11):1060-1068. [29]Xiao X, Wu H, Zhou X, et al. The combination of quantitative PCR and western blot detecting CP4-EPSPS component in roundup ready soy plant tissues and commercial soy-related foodstuffs[J]. Journal of Food Science, 2012, 77(6):C603-C608. [30]宋君, 郭灵安, 雷绍荣, 等. 实时荧光定量PCR检测转基因玉米59122的方法建立及测量不确定度评估[J]. 食品科学, 2014, 35(24):259-264. [31]张丽, 刘丽丽, 梁晓声, 等. 实时定量PCR鉴定转基因作物纯合[J]. 中南民族大学学报:自然科学版, 2015, (1):43-46. [32]Treml D, Venturelli GL, Brod FbC, et al. Development of an event-specific hydrolysis probe quantitative real-time polymerase chain reaction assay for Embrapa 5. 1 genetically modified common bean(Phaseolus vulgaris)[J]. J Agric Food Chem, 2014, 62(49):11994-12000. [33]Randhawa GJ, Chhabra R, Singh M. Decaplex and real-time PCR based detection of MON531 and MON15985 Bt cotton events[J]. J Agric Food Chem, 2010, 58(18):9875-9881. [34]Madhugiri NR, Charles K, Sujata A, et al. Sensitivity of a real-time PCR method for the detection of transgenes in a mixture of transgenic and non-transgenic seeds of papaya(Carica papaya L.)[J]. BMC Biotechnology, 2013, 13(1):69. [35]Vaudano E, Costantini A, Garcia-Moruno E. An event-specific method for the detection and quantification of ML01, a genetically modified Saccharomyces cerevisiae wine strain, using quantitative PCR[J]. International Journal of Food Microbiology, 2016, 234:15-23. [36]D?rries HH, Remus I, Gr?newald A, et al. Development of a qualitative, multiplex real-time PCR kit for screening of genetically modified organisms(GMOs)[J]. Analytical & Bioanalytical Chemistry, 2010, 396(6):2043-2054. [37]Li X, Wang X, Yang J, et al. A novel quadruplex real-time PCR method for simultaneous detection of Cry2Ae and two genetically modified cotton events(GHB119 and T304-40)[J]. BMC Biotechnology, 2014, 14(1):43. [38]李亮, 隋志伟, 王晶, 等. 基于数字PCR的单分子DNA定量技术研究进展[J]. 生物化学与生物物理进展, 2012, 39(10):1017-1023. [39] Dobnik D, Spilsberg B, Bogo?alec KA, et al. Multiplex quantifica-tion of 12 European Union authorized genetically modified maize lines with droplet digital polymerase chain reaction[J]. Analy-tical Chemistry, 2015, 87(16):8218-8226. [40]任怡菲, 高琴, 邓婷婷, 等. 基于数字PCR的转基因水稻LL62品系精准定量检测方法建立[J]. 生物技术通报, 2016, 32(8):69-76. [41]于晓帆, 高宏伟, 孙敏, 等. 荧光PCR和数字PCR法检测转基因DAS-44406-6品系大豆[J]. 食品科学, 2016, 37(16):235-241. [42]Baker M. Digital PCR hits its stride[J]. Nature Methods, 2012, 9(6):541-544. [43] Li X, Wu Y, Li J, et al. Development and validation of a 48-target analytical method for high-throughput monitoring of genetically modified organisms[J]. Scientific Reports, 2015, 5:7616. [44] Corbisier P, Bhat S, Partis L, et al. Absolute quantification of genetically modified MON810 maize(Zea mays L.)by digital polymerase chain reaction[J]. Analytical and Bioanalytical Chemistry, 2010, 396(6):2143-2150. [45] Liang L, Zhang X, Wan Y, et al. Development of a novel reference plasmid for accurate quantification of genetically modified kefeng6 rice DNA in food and feed samples[J]. BioMed Research International, 2013, 2013(10):134675. [46]Bhat S, Emslie KR. Digital polymerase chain reaction for characterisation of DNA reference materials[J]. Biomol Detect Quantif, 2016, 10:47-49. [47]Gtowacka K, Kromdijk J, Leonelli L, et al. An evaluation of new and established methods to determine T-DNA copy number and homozygosity in transgenic plants[J]. Plant Cell & Environment, 2016, 39(4):908. [48] 徐潮. 重组酶介导的等温扩增技术在转基因检测中的应用[D]. 北京:中国农业科学院, 2014. [49]Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Research. 2000, 28(12):e63-e63. [50]周杰, 黄文胜, 邓婷婷, 等. 环介导等温扩增法检测6种转基因大豆[J/OL]. 农业生物技术学报, 2017, 25(2):335-344. [51]Chen R, Wang Y, Zhu Z, et al. Development of the one-step visual loop-mediated isothermal amplification assay for genetically modified rice event TT51-1[J]. Food Science and Technology Research, 2014, 20(1):71-77. [52]Cheng N, Shang Y, Xu Y, et al. On-site detection of stacked genetically modified soybean based on event-specific TM-LAMP and a DNAzyme-lateral flow biosensor[J]. Biosensors and Bioelectronics, 2017, 91:408-416. [53]Shao N, Chen J, Hu J, et al. Visual detection of multiple genetically modified organisms in a capillary array[J]. Lab on A Chip, 2017, 17(3):521-529. [54] Morisset D, Dobnik D, Hamels S, et al. NAIMA:target amplification strategy allowing quantitative on-chip detection of GMOs[J]. Nucleic Acids Research, 2008, 36(18):e118-e118. [55]Tengs T, Kristoffersen AB, Berdal KG, et al. Microarray-based method for detection of unknown genetic modifications[J]. BMC Biotechnology, 2007, 7(1):91. [56]Turkec A, Lucas SJ, Karacanli B, et al. Assessment of a direct hybridization microarray strategy for comprehensive monitoring of genetically modified organisms(GMOs)[J]. Food Chemistry, 2016, 194:399-409. [57]邵碧英, 陈文炳, 李寿崧, 等. 转基因产品检测方法建立的基础及应用[J]. 检验检疫科学, 2002(3):14-19. [58]Guertler P, Paul V, Albrecht C, et al. Sensitive and highly specific quantitative real-time PCR and ELISA for recording a potential transfer of novel DNA and Cry1Ab protein from feed into bovine milk[J]. Analytical & Bioanalytical Chemistry, 2009, 393(6-7):1629-1638. [59]胡艳丽. PCR-ELISA方法在转基因大豆检测中的应用[J]. 食品安全导刊, 2015, 21:74. [60]Wang XJ, Jin X, Dun BQ, et al. Gene-splitting technology:a novel approach for the containment of transgene flow in Nicotiana tabacum[J]. PLoS One, 2014, 9(6):e99651. [61]Yates K, Sambrook J, Russel D, et al. Detection methods for novel foods derived from genetically modified organisms[M]. ILSI Europe, 1999. [62]王荣谈, 张建中, 刘冬儿, 等. 转基因产品检测方法研究进展[J]. 上海农业学报, 2010, 26(1):116-119. [63]Santos VO, Pelegrini PB, Mulinari F, et al. A novel immunochrom-atographic strip test for rapid detection of Cry1Ac and Cry8Ka5 proteins in genetically modified crops[J]. Analytical Methods, 2015, 7(21):9331-9339. [64]Mutoni CK, Magiri E, Boga IH, et al. Inadvertent presence of genetically modified elements in maize food products in Kenyan markets[J]. African Journal of Biotechnology, 2013, (31):4881-4890. [65]张欣, 彭毛, 刘波, 等. 快速试纸条在转基因水稻和大米检测中的应用[J]. 粮食科技与经济, 2015, 40(5):48-49. [66]张裕君, 贺艳, 赵卫东, 等. PCR核酸试纸条法检测转基因黑曲霉[J]. 食品研究与开发, 2013, 34(20):62-64. [67]沈苏南. 一种多重PCR技术在转基因大豆检测中的应用研究[D]. 苏州:苏州大学, 2016. |
[1] | WEN Xiao-lei, LI Jian-yuan, LI Na, ZHANG Na, YANG Wen-xiang. Construction and Utilization of Yeast Two-hybrid cDNA Library of Wheat Interacted by Puccinia triticina [J]. Biotechnology Bulletin, 2023, 39(9): 136-146. |
[2] | GUO Shao-hua, MAO Hui-li, LIU Zheng-quan, FU Mei-yuan, ZHAO Ping-yuan, MA Wen-bo, LI Xu-dong, GUAN Jian-yi. Whole Genome Sequencing and Comparative Genome Analysis of a Fish-derived Pathogenic Aeromonas Hydrophila Strain XDMG [J]. Biotechnology Bulletin, 2023, 39(8): 291-306. |
[3] | LI Tuo, LI Long-ping, QU Lei. Research Progress in the Structure of Tailed Bacteriophage and Its Receptors [J]. Biotechnology Bulletin, 2023, 39(6): 88-101. |
[4] | QIAN Bang, LIU Zhen-dong, ZHAO Yin, LI Jing, PRAJAPATI Meera, LI Yan-min, SUN Yue-feng, DOU Yong-xi. Establishment of Chemiluminescence Immunoassay for the Detection of Peste des Petits Ruminants Virus H Protein Antibodies [J]. Biotechnology Bulletin, 2023, 39(5): 120-129. |
[5] | CHEN Xiao-meng, ZHANG Xue-jing, ZHANG Huan, ZHANG Bao-jiang, SU Yan. Prokaryotic Expression of Recombinant Bovine Mastitis Staphylococcus aureus GapC Protein and Identification of Its B-cell Epitopes [J]. Biotechnology Bulletin, 2023, 39(5): 306-313. |
[6] | YU Hui-li, LI Ai-tao. Application of Cytochrome P450 in the Biosynthesis of Flavors and Fragrances [J]. Biotechnology Bulletin, 2023, 39(4): 24-37. |
[7] | WANG Yi-qing, WANG Tao, WEI Chao-ling, DAI Hao-min, CAO Shi-xian, SUN Wei-jiang, ZENG Wen. Identification and Interaction Analysis of SMAS Gene Family in Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(4): 246-258. |
[8] | HOU Xiao-yuan, CHE Zheng-zheng, LI Heng-jing, DU Chong-yu, XU Qian, WANG Qun-qing. Construction of the Soybean Membrane System cDNA Library and Interaction Proteins Screening for Effector PsAvr3a [J]. Biotechnology Bulletin, 2023, 39(4): 268-276. |
[9] | WANG Mu-qiang, CHEN Qi, MA Wei, LI Chun-xiu, OUYANG Peng-fei, XU Jian-he. Advances in the Application of Machine Learning Methods for Directed Evolution of Enzymes [J]. Biotechnology Bulletin, 2023, 39(4): 38-48. |
[10] | LI Tian-shun, LI Chen-wei, WANG Jia, ZHU Long-Jiao, XU Wen-tao. Efficient Generation of Secondary Libraries During Functional Nucleic Acids Screening [J]. Biotechnology Bulletin, 2023, 39(3): 116-122. |
[11] | WANG Tao, QI Si-yu, WEI Chao-ling, WANG Yi-qing, DAI Hao-min, ZHOU Zhe, CAO Shi-xian, ZENG Wen, SUN Wei-jiang. Expression Analysis and Interaction Protein Validation of CsPPR and CsCPN60-like in Albino Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(3): 218-231. |
[12] | DU Qing-jie, ZHOU Lu-yao, YANG Si-zhen, ZHANG Jia-xin, CHEN Chun-lin, LI Juan-qi, LI Meng, ZHAO Shi-wen, XIAO Huai-juan, WANG Ji-qing. Overexpression of CaCP1 Enhances Salt Stress Sensibility in Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(2): 172-182. |
[13] | SA Shi-juan, WU Han-yu, WEN Yuan, CHEN Xue-na, ZHENG Rui, YAO Xin-ling. Responses of Choloroplast Specific Protein Profile to Different Stomatal Densities in Nicotiana benthamiana [J]. Biotechnology Bulletin, 2023, 39(2): 193-202. |
[14] | ZHANG Xiao-yan, YANG Shu-hua, DING Yang-lin. Molecular Mechanism of Cold Signal Perception and Transduction in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 28-35. |
[15] | HUANG Jia-yan, FENG Xiao-yan, SHEN Lin-bo, WANG Wen-zhi, HU Hai-yan, ZHANG Shu-zhen. Cloning of Sugarcane ShPR10 Gene and Study on the Interaction Between ShPR10 Protein and P1 Protein Encoded by Sugarcane Streak Mosaic Virus [J]. Biotechnology Bulletin, 2023, 39(10): 163-174. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||