Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (3): 23-30.doi: 10.13560/j.cnki.biotech.bull.1985.2017-0657
Previous Articles Next Articles
LIN Bei, LI Jian-Xiu, LIU Xue-ling
Received:
2017-08-09
Online:
2018-03-20
Published:
2018-04-10
LIN Bei, LI Jian-Xiu, LIU Xue-ling. The Effects of By-products of Hydrolyzing Lignocellulose on Ethanol Fermentation and Relevant Countermeasures[J]. Biotechnology Bulletin, 2018, 34(3): 23-30.
[1]Zabed H, Sahu JN, Suely A, et al. Bioethanol production from renewable sources:current perspectives and technological progress[J]. Renewable and Sustainable Energy Reviews, 2017, 71:475-501. [2]Ravindran R, Jaiswal AK. A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste:Challenges and opportunities[J]. Bioresour Technol, 2016, 199:92-102. [3]Li Q, Song J, Peng S, et al. Plant biotechnology for lignocellulosic biofuel production[J]. Plant Biotechnol Journal, 2014, 12:1174-1192. [4]Palmqvist E, Hahn-H?gerdal B. Fermentation of lignocellulosic hydrolysates. II:Inhibitors and mechanisms of inhibition[J]. Bioresour Technol, 2000, 74:25-33. [5]Pol ECVD, Bakker RR, Baets P, et al. By-products resulting from lignocellulose pretreatment and their inhibitory effect on fermentations for(bio)chemicals and fuels[J]. Appl Microbiol Biotechnol, 2014, 98:9579-9593. [6]Palmqvist E, Almeida JS, Hahn-H?gerdal B. Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture[J]. Biotechnol Bioeng, 1999, 62:447-454. [7]林贝, 赵心清, 葛旭萌, 等. 玉米秸秆酸解副产物对重组酿酒酵母6508-127发酵的影响[J]. 中国生物工程杂志, 2007, 27(7):61-67. [8]Field SJ, Ryden P, Wilson D, et al. Identification of furfural resistant strains of Saccharomyces cerevisiae and Saccharomyces paradoxus from a collection of environmental and industrial isolates[J]. Biotechnol Biofuels, 2015, 8(1):33. [9]Behera S, Arora R, Nandhagopal N, et al. Importance of chemical pretreatment for bioconversion of lignocellulosic biomass[J]. Renewable and Sustainable Energy Reviews, 2014, 36:91-106. [10]Modig T, Liden G, Taherzadeh MJ. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydro-genase and pyruvate dehydrogenase[J]. Biochem J, 2002, 363(3):769-776. [11]Iwaki A, Kawai T, Yamamoto Y, et al. Biomass conversion inhibitors furfural and 5-hydroxymethylfurfural induce formation of messenger RNP granules and attenuate translation activity in Saccharomyces cerevisiae[J]. Appl Environ Microbiol, 2013, 79(5):1661-1667. [12]Allen SA, Clark W, McCaffery JM, et al. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae[J]. Biotechnology for Biofuels, 2010, 3:2. [13]Hyland PB, Mun SLS, Mahadevan R. Prediction of weak acid toxicity in Saccharomyces cerevisiae using genome-scale metabolic models[J]. Industrial Biotechnology, 2013, 9(4):229-235. [14]Larsson S, Palmqvist E, Hahn-H?gerdal B, et al. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood[J]. Enzyme Microb Technol, 1999, 24(3/4):151-159. [15]Li YC, Mitsumasu K, Gou ZX, et al. Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37[J]. Appl Microbiol Biotechnol, 2016, 100:1531-1542. [16]Lawford HQ, Rousseau JD. Improving fermentation performance of recombinant Zymomonas in acetic acid-containing media[J]. Appl Biochem Biotech, 1998, 70-72:161-172. [17]Casey E, Sedlak M, Ho MW, et al. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae[J]. FEMS Yeast Res, 2010, 10:385-393. [18]Ishida Y, Nguyen TTM, Izawa S. The yeast ADH7 promoter enables gene expression under pronounced translation repression caused by the combined stress of vanillin, furfural, and 5-hydroxymethylfurfural[J]. Journal of Biotechnology, 2017, 252:65-72. [19]Yi X, Gu HQ, Gao QQ, et al. Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment[J]. Biotechnol Biofuels, 2015, 8:153. [20]Larsen J, Haven M?, Thirup L. Inbicon makes lignocellulosic ethanol a commercial reality[J]. Biomass Bioenergy, 2012, 46:36-45. [21]Liu CG, Liu LY, Zi LH, et al. Assessment and regression analysis on instant catapult steam explosion pretreatment of corn stover[J]. Bioresour Technol, 2014, 166:368-372. [22]李夏洁, 李清明, 苏小军, 等. 高效液相色谱法测定芒草60Coγ辐照降解副产物[J]. 湖南农业大学学报:自然科学版, 2015, 41(5):527-532. [23]Jacquet N, Vanderghem C, Blecker C, et al. Improvement of the cellulose hydrolysis yields and hydrolysate concentration by management of enzymes and substrate input[J]. Cerevisia, 2012, 37:82-87. [24]Zhu Z, Simister R, Bird S, et al. Microwave assisted acid and alkali pretreatment of Miscanthus biomass for biorefineries[J]. Bioengineering, 2015, 2:449-468. [25]Palmqvist E, Hahn-H?gerdal B. Fermentation of lignocellulosic hydrolysates. I:Inhibition and detoxification[J]. Biores Technol, 2000, 74:17-24. [26]Kim Y, Kreke T, Hendrickson R, et al. Fractionation of cellulase and fermentation inhibitors from steam pretreated mixed hardwood[J]. Bioresour Technol, 2013, 135:30-38. [27]Cao G, Ximenes E, Nichols NN, et al. Biological abatement of cellulase inhibitors[J]. Bioresour Technol, 2013, 146:604-610. [28]Zhang J, Zhu ZN, Wang XF, et al. Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol fermentation[J]. Biotechnology for Biofuels, 2010, 3:1-26. [29]张建, 楚德强, 于占春, 等. 低水用量约束条件下的高固体含量纤维乙醇生物加工技术策略[J]. 生物工程学报, 2010, 26(7):950-959. [30]Hanly TJ, Henson MA. Dynamic model-based analysis of furfural and HMF detoxification by pure and mixed batch culture of S. cerevisiase and S. stipitis[J]. Biotechnol Bioeng, 2014, 111:272-284. [31]Rin KS, Skerker JM, Iok KI, et al. Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol[J]. Metabolic Engineering, 2017, 40:176-185. [32]Modig T, Almeida JR, Gorwa-Grauslund MF, et al. Variability of the Response of Saccharomyces cerevisiae Strains to Lignocellulose Hydrolysate[J]. Biotechnology and Bioengineering, 2008, 100(3):423-429. [33]Mattam AJ, Kuila A, Suralikerimath N, et al. Cellulolytic enzyme expression and simultaneous conversion of lignocellulosic sugars into ethanol and xylitol by a new Candida tropicalis strain[J]. Biotechnol Biofuels, 2016, 9:157. [34]Chang JJ, Ho FJ, Ho CY, et al. Assembling a cellulase cocktail and a cellodextrin transporter into a yeast host for CBP ethanol production[J]. Biotechnol Biofuels, 2013, 6:19. [35]Olson DG, McBride JE, Shaw AJ, et al. Recent progress in consolidated bioprocessing[J]. Curr Opin Biotechnol, 2012, 23(3):396-405. [36]齐凯. 季也蒙氏毕赤酵母利用玉米芯水解液发酵产乙醇的研究[D]. 上海:华东理工大学, 2016. [37]Li Y, Park JY, Shiroma R, et al. Improved ethanol and reduced xylitol production from glucose and xylose mixtures by the mutant strain of Candida shehatae ATCC 22984[J]. Appl Biochem Biotech, 2012, 166:1781-1790. [38]Hughes S, Gibbons W, Bang S, et al. Random UV-C mutagenesis of Scheffersomyces(formerly Pichia)stipitis NRRL Y-7124 to improve anaerobic growth on lignocellulosic sugars[J]. J Ind Microbiol Biotechnol, 2012, 39(1):163-173. [39]Harner NK, Bajwa PK, Habash MB, et al. Mutants of the pentose-fermenting yeast Pachycolen tannophilus tolerant to hardwood spent sulfite liquor and acetic acid[J]. Antonie Van Leeuwenhoek, 2014, 105(1):29-43. [40]Srisuda S, Thada C, Yotin K, et al. Enhanced xylose fermentation and hydrolysate inhibitor tolerance of Scheffersomyces shehatae for efficient ethanol production from non-detoxified lignocellulosic hydrolysate[J]. SpringerPlus, 2016, 5:1040. [41]Kumari R, Pramanik K. Improvement of multiple stress tolerance in yeast strain by sequential mutagenesis for enhanced bioethanol production[J]. Journal of Bioscience and Bioengineering, 2012, 114(6):622-629. [42]Pereira SR, Violeta SIN, Fraz?o CJR, et al. Adaptation of Scheffersomyces stipitis to hardwood spent sulfite liquor by evolutionary engineering[J]. Biotechnology for Biofuels, 2015, 8:50. [43]Koppram R, Albers E, Olsson L, et al. Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass[J]. Biotechnology for Biofuels, 2012, 5:32. [44]Almario MP, Reyes LH, Kao KC. Evolutionary Engineering of Saccharomyces cerevisiae for Enhanced Tolerance to Hydrolysates of Lignocellulosic Biomass[J]. Biotechnology and Bioengineering, 2013, 110(10):2616-2623. [45]Wang X, Li BZ, Ding MZ, et al. Metabolomic analysis reveals key metabolites related to the rapid adaptation of Saccharomyce cerevisiae to multiple inhibitors of furfural, acetic acid, and phenol[J]. OMICS, 2013, 17:150-159. [46]Thompson OA, Hawkins GM, Gorsich SW, et al. Phenotypic chara-cterization and comparative transcriptomics of evolved Saccharom-yces cerevisiae strains with improved tolerance to lignocellulosic derived inhibitors[J]. Biotechnol Biofuels, 2016, 9:200. [47]郝学财, 门珣, 张宜, 等. 酿酒酵母在纤维素乙醇生产中在毒性化合物的耐受机理研究进展[J]. 2012, 39(2):254-263. [48]Pereira FB, Teixeira MC, Mira NP, et al. Genome-wide screening of Saccharomyces cerevisiae genes required to foster tolerance towards industrial wheat straw hydrolysates[J]. J Ind Microbiol Biotechnol, 2014, 41:1753-1756. [49]Jang Y, Lim Y, Kim K. Saccharomyces cerevisiae Strain Improvement Using Selection, Mutation, and Adaptation for Lignocellulose-Derived FermentationInhibitor Resistance for Ethanol Production[J]. J Microbiol Biotechnol, 2014, 24(5):667-674. [50]Chen R, Dou J. Biofuels and bio-based chemicals from lignocellulose:metabolic engineering strategies in strain development[J]. Biotechnol Lett, 2016, 38:213-221. [51]Cheng C, Almario MP, Kao KC. Genome shuffling to generate recombinant yeasts for tolerance to inhibitors present in lignocellulosic hydrolysates[J]. Biotechnol Lett, 2015, 37:2193-2200. [52]马翠, 赵心清, 李倩, 等. 利用人工锌指文库选育高乙醇耐受性工业酵母菌株[J]. 生物工程学报, 2013, 29(5):612-619. [53]Zhu JQ, Qin L, Li WC, et al. Simultaneous saccharification and co-fermentation of dry diluted acid pretreated corn stover at high dry matter loading:Overcoming the inhibitors by non-tolerant yeast[J]. Bioresour Technol, 2015, 198:39-46. [54]郝学密, 杜斌, 刘黎阳, 等. ORP对酿酒酵母在木质纤维素水解液抑制物中发酵的影响[J]. 化工学报, 2015, 66(3):1066-1071. [55]KO KJ, Um Y, Park Y-C, et al. Compounds inhibiting the bioconversion of hydrothermally pretreated lignocellulose[J]. Appl Microbiol Biotechnol, 2015, 99:4201-4212. [56]Almeida JRM, Modig T, Petersson A, et al. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae[J]. Journal of Chemical Technology & Biotechnology, 2007, 82(4):340-349. [57]王俊姝, 祁庆生. 合成生物学与代谢工程[J]. 生物工程学报, 2009, 25(9):1296-1302. [58]陈国强, 王颖. 中国“合成生物学”973 项目研究进展[J]. 生物工程学报, 2015, 31(6):995-1008. |
[1] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[2] | CHENG Ya-nan, ZHANG Wen-cong, ZHOU Yuan, SUN Xue, LI Yu, LI Qing-gang. Synthetic Pathway Construction of Producing 2'-fucosyllactose by Lactococcus lactis and Optimization of Fermentation Medium [J]. Biotechnology Bulletin, 2023, 39(9): 84-96. |
[3] | ZHAO Si-jia, WANG Xiao-lu, SUN Ji-lu, TIAN Jian, ZHANG Jie. Modification of Pichia pastoris for Erythritol Production by Metabolic Engineering [J]. Biotechnology Bulletin, 2023, 39(8): 137-147. |
[4] | LI Yu-zhen, MEI Tian-xiu, LI Zhi-wen, WANG Qi, LI Jun, ZOU Yue, ZHAO Xin-qing. Advances in Genomic Studies and Metabolic Engineering of Red Yeasts [J]. Biotechnology Bulletin, 2023, 39(7): 67-79. |
[5] | YOU Zi-juan, CHEN Han-lin, DENG Fu-cai. Research Progress in the Extraction and Functional Activities of Bioactive Peptides from Fish Skin [J]. Biotechnology Bulletin, 2023, 39(7): 91-104. |
[6] | YU Hui-li, LI Ai-tao. Application of Cytochrome P450 in the Biosynthesis of Flavors and Fragrances [J]. Biotechnology Bulletin, 2023, 39(4): 24-37. |
[7] | TANG Rui-qi, ZHAO Xin-qing, ZHU Du, WANG Ya. Stress Tolerance of Escherichia coli to Inhibitors in Lignocellulosic Hydrolysates [J]. Biotechnology Bulletin, 2023, 39(11): 205-216. |
[8] | WANG Wen-tao, FENG Qi, LIU Chen-guang, BAI Feng-wu, ZHAO Xin-qing. Redox-sensitive Genetic Parts Improve the Tolerance of Yeast to Lignocellulosic Hydrolysate Inhibitors [J]. Biotechnology Bulletin, 2023, 39(11): 360-372. |
[9] | LIU Yi-yun, DENG Li-min, YUE Hui-ying, YUE Chao, LIU Jian-hua. Research Progress in Plasmid Conjugation and Its Inhibitors [J]. Biotechnology Bulletin, 2022, 38(9): 35-46. |
[10] | QIU Yi-bin, MA Yan-qin, SHA Yuan-yuan, ZHU Yi-fan, SU Er-zheng, LEI Peng, LI Sha, XU Hong. Research Progress in Molecular Genetic Manipulation Technology of Bacillus amyloliquefaciens and Its Application [J]. Biotechnology Bulletin, 2022, 38(2): 205-217. |
[11] | MA Yan-qin, QIU Yi-bin, LI Sha, XU Hong. Research Progress in the Biosynthesis and Metabolic Engineering of Hyaluronic Acid [J]. Biotechnology Bulletin, 2022, 38(2): 252-262. |
[12] | GAO Su, MA Jie-xin, LIU Jing-ju, ZHAO Guo-zhu. Study on Antibacterial Activity and Mechanism of Cordycepin [J]. Biotechnology Bulletin, 2021, 37(4): 137-144. |
[13] | ZHAI Xu-hang, LI Xia, YUAN Ying-jin. Research Progress of Lignocellulose Pretreatment and Valorization Method [J]. Biotechnology Bulletin, 2021, 37(3): 162-174. |
[14] | CHEN Ting, XIE Mei-ying, WEI Li-min, OUYANG Kun, CHENG Xiao, ZHANG Yong-liang. Inhibitory Effects of Porcine Milk-derived Exosome on Porcine Epidemic Diarrhea Virus [J]. Biotechnology Bulletin, 2021, 37(12): 141-150. |
[15] | HU Fang, DONG Xu, SHI Chang-wei, WU Xue-dong. Progress in Ultrasound Intensification for Enzymatic Hydrolysis of Lignocellulose [J]. Biotechnology Bulletin, 2021, 37(10): 234-244. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||