Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (4): 35-42.doi: 10.13560/j.cnki.biotech.bull.1985.2017-0429
Previous Articles Next Articles
CHEN Shui-hong1, 2, CAO Ying1, CHEN Tai-xiang1, LI Chun-jie1
Received:
2017-05-24
Online:
2018-04-20
Published:
2018-05-04
CHEN Shui-hong, CAO Ying, CHEN Tai-xiang, LI Chun-jie. Research Process on the Endophyte Improving the Grass’s Salt and Alkali Resistance[J]. Biotechnology Bulletin, 2018, 34(4): 35-42.
[1] Yamaguchi T, Blumwald E.Developing salt-tolerant crop plants, challenges and opportunities[J]. Trends in Plant Science, 2005, 10:615-620. [2] Cabot C, Sibole JV, Poschenrieder C.Lessons from crop plants struggling with salinity[J]. Plant Science, 2014, 226(3):2-13. [3] 肖克飚, 吴普特, 雷金银, 班乃荣. 不同类型耐盐植物对盐碱土生物改良研究[J]. 农业环境科学学报, 2013, 31(12):2433-2440. [4] Porter JK.Chemical constituents of grass endophytes. Biotechnology of Endophytic Fungi of Grasses[M]. CRC Press Boca Raton, 1994:103-123. [5] Bush LP, Wilkinson HH, Schardl CL.Bioprotective alkaloids of grass-fungal endophyte symbioses[J]. Plant Physiology, 1997, 114:1-7. [6] Zhu JK.Plant salt tolerance[J]. Trends in Plant Science, 2001(2):66-71. [7] Zhu JK.Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology, 2002, 53:247-273. [8] Munns R, Tester M.Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59:651-681. [9] 王宝山. 逆境植物生物学[M]. 北京:高等教育出版社, 2010:18-102. [10] Siegel MR, Johnson MC, Varney DR, et al.A fungal endophyte in tall fescue:incidence and dissemination[J]. Phytopathology, 1984, 74(8):932-937. [11] Clay K.Fungal endophytes of grasses:a defensive mutualism between plants and fungi[J]. Ecology, 1988, 69(1):10-16. [12] Schardl CL, Leuchtmann A, Chung KR, et al.Coevolution by common descent of fungal symbionts(Epichloë spp. )and grass hosts[J]. Molecular, Biology and Evolution, 1997, 14:133-143. [13] Latch GCM.Physiological interactions of endophytic fungi and hosts biotic stress tolerance imparted to grasses by endophytes[J].Agric Ecosyst Environm, 1993, 44(1-4):143-156. [14] Clement SL, Wilson AD, Lester DG, Davitt CM.Fungal endophyte of wild barley and their effects on Diuraphis noxia Population development[J]. Entomologia Experimentalis Et Applicata, 1997, 82(3):275-281. [15] Clement SL, Lester DG.Field evaluation of wild barley against Russian wheat aphid[J]. Arthropod Management Tests, 1999, 24:409. [16] Clement SL, Elberson LR, Bosque-perez NA, Schotzko DJ. Detrimental and neutral effects of wild barley-Neotyphodium fungal endophyte associations on insect survival[J]. Entomologia Experimentalis Et Applicata, 2005, 114(2):119-125. [17] Clement SL, Hu JG, Stewart AV, et al.Detrimental and neutral effects of wild grass-fungal endophyte symbiotum on insect preference and performance[J]. Journal of Insect Science, 2011, 11:1-13. [18] Crawford KM, Land JM, Rudgers JA.Fungal endophytes of native grasses decrease insect herbivore preference and performance[J]. Oecologia, 2010, 164:431-444. [19] Clarke BB, White JF, Hurley RH, et al.Endophyte-mediated suppression of dollar spot disease in fine fescues[J]. Plant Disease, 2006, 90(8):994-998. [20] Christensen MJ.Antifungal activity in grasses infected with Acremonium and Epichloë endophytes[J]. Australasian Plant Pathology, 1996, 25(3):186-191. [21] Bacon CW.Abiotic stress tolerances(moisture, nutrients)and photosynthesis in endophyte-infected tall fescue[J]. Agriculture Ecosyst Environm, 1993, 44(1-4):123-141. [22] Malinowski DP, Belesky DP.Adaptation of endophyte-infected cool-season grasses to environment stresses:Mechanisms of drought and mineral stress tolerance[J]. Crop Science, 2000, 40(4):923-940. [23] Swarthout D, Harper E, Judd S, et al.Measures of leaf-level water-use efficiency in drought stressed endophyte infected and non-infected tall fescue grasses[J]. Environ Exp Bot, 2009, 66:88-93. [24] 宋梅玲, 李春杰, 彭清青, 等. 温度和水分胁迫下内生真菌对野大麦种子发芽的影响[J]. 草地学报, 2010, 6:833-837. [25] Kane KH.Effects of endophyte infection on drought stress tolerance of Lolium perenne accessions from the Mediterranean region[J]. Enviromental and Experimental Botany, 2011, 71:337-344. [26] Marks S, Clay K.Physiological responses of Festuca arundinacea, to fungal endophyte infection[J]. New Phytologist, 1996, 133(4):727-733. [27] Zhou LY, Li CJ, Zhang XX, et al.Efects of cold shocked Epichloë infected Festuca sinensis on ergot alkaloid accumulation[J]. Fungal Ecology, 2015, 14:99-104. [28] Song M, Li X, Saikkonen K, et al.An asexual Epichloë endophyte enhances waterlogging tolerance of Hordeum brevisubulatum[J]. Fungal Ecology, 2015, 13:44-52. [29] Monnet F, Vaillant N, Hitmi A, et al.Endophytic Neotyphodium lolii induced tolerance to Zn stress in Lolium perenne[J]. Physiologia Plantarum, 2001, 113(4):557-563. [30] Saikkonen K, Ruokolainen K, Huitu O, et al.Hamilton and M. Helander. Fungal endophytes help prevent weed invasions[J]. Agriculture Ecosystems & Environment, 2013, 165(3):1-5. [31] Bao GS, Saikkonen K, Wang HS, et al.Does endophyte symbiosis resist allelopathic effects of an invasive plant in degraded grassland?[J]. Fungal Ecology, 2015, 17:114-125. [32] 尹立佳. 内生真菌感染对宿主禾草盐碱耐受性的生理生态影响[D]. 天津:南开大学, 2012. [33] Song ML, Chai Q, Li X, et al.An asexual Epichloë endophyte modifies the nutrient stoichiometry of wild barley(Hordeum brevisubulatum)under salt stress[J]. Plant and Soil, 2015, 387(1-2):153-165. [34] 张晶晶, 安沙舟, 施宠, 等. 内生真菌侵染对盐胁迫下德兰臭草种子萌发及幼苗生理特性的影响[J]. 中国草地学报, 2017, 39(2):59-64. [35] 施宠, 黄炜, 王纯利. 内生真菌对披碱草耐盐性的影响[J]. 新疆农业大学学报2016, 39(4):277-280. [36] Clay K, Holah J.Fungal endophyte symbiosis and plant diversity in successional fields[J]. Science, 1999, (5434):1742-1745. [37] Yao X, Christensen MJ, . Bao GS, et al.A toxic endophyte-infected grass helps reverse degradation and loss of biodiversity of over-grazed grasslands in northwest China[J]. Scientific Reports, 2015, 5:18527. [38] 魏茂英, 尹立佳, 贾彤, 等. 天然禾草中三种内生真菌对非生物胁迫耐性的比较研究[J]. 植物学研究, 2012, 1:1-7. [39] 宋梅玲. 野大麦内生真菌共生体耐盐性的生理机制研究[D]. 兰州:兰州大学, 2015. [40] 王志伟, 王世梅, 纪燕玲, 等. 中国禾本科植物内生真菌研究-东营市盐碱地区的禾本科植物内生真菌的检测与分布特征[J]. 草业科学, 2005, 22(2):60-64. [41] Hammami H, Baptista P, Martins F, et al.Impact of a natural soil salinity gradient on fungal endophytes in wild barley(Hordeum maritimum, with. )[J]. World J Microbiol Biotechnol, 2016, 32(11), 184-194. [42] Ayers AD, Brown JW, Wadleigh CH.Salt tolerance of barley and wheat in soil plots receiving several salination regimes[J]. Agronomy Journal, 1952, 44(6):307-310. [43] 缑小媛. 内生真菌对醉马草耐盐性的影响研究[D]. 兰州:兰州大学, 2007. [44] 王正凤, 李春杰, 金文进, 南志标. 内生真菌对野大麦耐盐性的影响[J]. 草地学报, 2009, 17(l):88-92. [45] 旷宇, 南志标, 田沛. 内生真菌和水引发对NaCl胁迫条件下中华羊茅种子萌发的影响[J]. 草业学报, 2016, 25(2):160-168. [46] 周连玉, 张帅, 更周才让, 罗巧玉. 盐胁迫下内生真菌感染对中华羊茅幼苗生长的影响[J]. 北方园艺, 2016, (9):65-68. [47] Sabzalian MR, Mirlohi A.Neotyphodium endophytes trigger salt resistance in tall and meadow fescues[J]. Journal of Plant Nutrition and Soil Science, 2010, 173(6):952-957. [48] Rodriguez RJ, Henson J, Volkenburgh EV, et al.Stress tolerance in plants via habitat-adapted symbiosis[J]. International Society for Microbial Ecology, 2008, 2(4):404-416. [49] Bu N, Li X., Li Y, et al. Effects of Na2CO3 stress on photosynthesis and antioxidative enzymes in endophyte infected and non-infected rice[J]. Ecotoxicol Environ Saf, 2012, 78(78):35-40. [50] Waller F, Achatz B, Baltruschat H, et al.The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield[J]. Proc Natl Acad Sci USA, 2005, (38):13386-13391. [51] Baltruschat HJ, Fodor BD, Harrach E, et al.Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants[J]. New Phytologist, 2008, 180(2):501-510. [52] Zabalgogeazcoa I, Romo M, Keck E, et al.The infection of Festuca rubra subsp. pruinosa by Epichloë festucae[J]. Grass and Forage Science, 2006, 61(1):71-76. [53] 任安芝, 高玉葆, 章瑾, 张晶. 内生真菌感染对黑麦草抗盐性的影响[J]. 生态学报, 2006, 26(6):1750-1757. [54] Battista JPD, Bacon CW, Severson R, et al.Indole acetic acid production by the fungal endophyte of tall fescue[J]. Agronomy Journal, 1990, 82(5):878-880. [55] Porter JK, Cutler HG, Bacon CW, et al.In vitro auxin production by Balansia epichloë[J]. Phytochemistry, 1985, 7:1429-1431. [56] Malinowski DP, Alloush GA, Belesky DP.Leaf endophyte Neotyphodium coenophialum modifies mineral uptake in tall fescue[J]Plant and Soil, 2000, 227(1):115-126. [57] Malinowski DP, Belesky DP.Neotyphodium coenophialum-endoph-yte infection affects the ability of tall fescue to use sparingly availa-ble phosphorus[J]. J Plant Nutr, 1999, 22(4-5):835-853. [58] 王宝生, 李明亮. 盐胁迫下外源脯氨酸和丙二醛对冰叶松叶菊愈伤组织中离子和脯氨酸含量的影响[J]. 植物生理学报, 1993(3):182-184. [59] Mcainsh MR, Brownlee C, Hetherington AM.Calcium ions as second messengers in guard cell signal transduction[J]. Physiologia Plantarum, 1997, 100(1):16-29. [60] Goswami S, Kumar RR, Sharma SK, et al.Calcium triggers protein kinases-induced signal transduction for augmenting the thermotolerance of developing wheat(Triticum aestivum)grain under the heat stress[J]. J Plant Biochem Biotechnol, 2015, 24(4):441-452. [61] 王志强, 王丰峰, 林同保. 钙离子对盐胁迫小麦幼苗脯氨酸含量及其相关酶活性的影响[J]. 河南农业大学学报, 2009, 43(5):475-479. [62] Rong QQ, Liu JB, Cai YP, et al.Leaf carbon, nitrogen and phosphorus stoichiometry of Tamarix chinensis Lour. in the Laizhou Bay coastal wetland, China[J]. Ecological Engineering, 2015, 76:57-65. [63] Shinozaki K, Yamaguchi-Shinozaki K.Gene networks involved in drought stress response and tolerance[J]. Journal of Experimental Botany, 2007, 58(2):221-227. [64] Wasilewska A, Vlad F, Sirichandra C, et al.An update on abscisic acid signaling in plants and more[J]. Molecular Plant, 2008, 1(2):198-217. [65] Chinnusamy V, Zhu JK.Plant salt tolerance:Plant Responses to Abiotic Stress[M]. Springer Berlin Heidelberg, 2004:241-270. [66] Gapińska M, Skłodowska M, Gabara B.Effect of short- and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots[J]. Acta Physiologiae Plantarum, 2008, 30(1):11-18. [67] Hamilton CE, Gundel PE, Helander M, Saikkonen K.Endophytic mediation of reactive oxygen species and antioxidant activity in plants:a review[J]. Fungal Diversity, 2012, 54(1):1-10. [68] Rouhier N, Jacquot JP.Getting sick may help plants overcome abiotic stress[J]. New Phytologist, 2008, 180(4):738-741. [69] 潘多锋, 申忠宝, 王建丽, 等. 碱性盐胁迫对偃麦草苗期生长的影响. 草业科学[J], 2016, 33(11):2276-2282. [70] Deinlein U, Stephan AB, Horie T, et al.Plant salt-tolerance mechanisms[J]. Trends Plant Sci, 2014, 19(6):371-379. [71] Parida A, Das AB, Das P.NaCl stress causes changes in photosynthetic pigments, proteins and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures[J]. J Plant Biol, 2002, 45(1):28-36. [72] Kerepesi I, Galiba G.Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings[J]. Crop Science, 2000, 40(2):482-487. [73] Khatkar D, Kuhad MS.Short-term salinity induced changes in two wheat cultivars at different growth stages[J]. Biologia Plantarum, 2000, 43(4):629-632. [74] Saikkonen K, Lehtonen P, Helander M, et al.Model systems in ecology:Dissecting the endophyte-grass literature[J]. Trends in Plant Science, 2006, 11(9):428-433. [75] Saikkonen K, YoungC A, Helander M, et al. Endophytic Epichloë species and their grass hosts:From evolution to applications[J]. Plant Molecular Biology, 2016, 90(6):665-675. [76] Johnson LJ, de Bonth ACM, et al. The exploitation of epichloae endophytes for agricultural benefit[J]. Fungal Diversity, 2013, 60(1):171-188. [77] 田沛, 旷宇, 南志标. 中华羊茅的优良特性以及利用内生真菌进行育种潜力浅析[J]. 草业科学, 2015, 32(7):1079-1087. |
[1] | WU Qiao-yin, SHI You-zhi, LI Lin-lin, PENG Zheng, TAN Zai-yu, LIU Li-ping, ZHANG Juan, PAN Yong. In Situ Screening of Carotenoid Degrading Strains and the Application in Improving Quality and Aroma of Cigar [J]. Biotechnology Bulletin, 2023, 39(9): 192-201. |
[2] | HAN Hao-zhang, ZHANG Li-hua, LI Su-hua, ZHAO Rong, WANG Fang, WANG Xiao-li. Construction of cDNA Library of Cinnamomun bodinieri Induced by Saline-alkali Stress and Screening of CbP5CS Upstream Regulators [J]. Biotechnology Bulletin, 2023, 39(9): 236-245. |
[3] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[4] | WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum [J]. Biotechnology Bulletin, 2023, 39(7): 160-172. |
[5] | KONG De-zhen, DUAN Zhen-yu, WANG Gang, ZHANG Xin, XI Lin-qiao. Physiological Characteristics and Transcriptome Analysis of Sorghum bicolor × S. Sudanense Seedlings Under Salt-alkali Stress [J]. Biotechnology Bulletin, 2023, 39(6): 199-207. |
[6] | LI Shan-jia, LEI Yu-xin, SUN Meng-ge, LIU Hai-feng, WANG Xing-min. Research Progress in the Diversity of Endophytic Bacteria in Seeds and Their Interaction with Plants [J]. Biotechnology Bulletin, 2023, 39(4): 166-175. |
[7] | WANG Hai-long, LI Yu-qian, WANG Bo, XING Guo-fang, ZHANG Jie-wei. Isolation and Expression Analysis of SiMAPK3 in Setaria italica L. [J]. Biotechnology Bulletin, 2023, 39(3): 123-132. |
[8] | DU Qing-jie, ZHOU Lu-yao, YANG Si-zhen, ZHANG Jia-xin, CHEN Chun-lin, LI Juan-qi, LI Meng, ZHAO Shi-wen, XIAO Huai-juan, WANG Ji-qing. Overexpression of CaCP1 Enhances Salt Stress Sensibility in Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(2): 172-182. |
[9] | YAN Xiong-ying, WANG Zhen, WANG Xia, YANG Shi-hui. Microbial Sulfur Metabolism and Stress Resistance [J]. Biotechnology Bulletin, 2023, 39(11): 150-167. |
[10] | WANG Ming-tao, LIU Jian-wei, ZHAO Chun-zhao. Molecular Mechanisms of Cell Wall Integrity in Plants Under Salt Stress [J]. Biotechnology Bulletin, 2023, 39(11): 18-27. |
[11] | ZHANG Yu-juan, LI Dong-hua, GONG Hui-hui, CUI Xin-xiao, GAO Chun-hua, ZHANG Xiu-rong, YOU Jun, ZHAO Jun-sheng. Cloning and Salt-tolerance Analysis of NAC Transcription Factor SiNAC77 from Sesamum indicum L. [J]. Biotechnology Bulletin, 2023, 39(11): 308-317. |
[12] | RUAN Hang, DUO Hao-yuan, FAN Wen-yan, LV Qing-han, JIANG Shu-jun, ZHU Sheng-wei. Role of the AtERF49 in the Responses to Salt-alkali Stress in Arabidopsis [J]. Biotechnology Bulletin, 2023, 39(1): 150-156. |
[13] | XU Yang, DING Hong, ZHANG Guan-chu, GUO Qing, ZHANG Zhi-meng, DAI Liang-xiang. Metabolomics Analysis of Germinating Peanut Seed Under Salt Stress [J]. Biotechnology Bulletin, 2023, 39(1): 199-213. |
[14] | XU Chong-xin, ZHONG Jian-feng, GAO Mei-jing, LU Li-na, LIU Xian-jin, SHEN Yan. Research Progress in Plant Endophyte on the Quality Safety and Nutritional Quality Regulation of Edible Agricultural Products [J]. Biotechnology Bulletin, 2022, 38(5): 215-227. |
[15] | ZHANG Bin, YANG Xin-xia. Identification of Key Transcription Factors in Response to Salt Stress in Rice [J]. Biotechnology Bulletin, 2022, 38(3): 9-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||