[1] Ishino Y, Shinagawa H, Makino K, et al.Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. J Bacteriol, 1987, 169(12):5429-5433. [2] Jinek M, Chylinski K, Fonfara I, et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821. [3] Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, et al.Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements[J]. J Mol Evol, 2005, 60(2):174-182. [4] Makarova KS, Haft DH, Barrangou R, et al.Evolution and classification of the CRISPR-Cas systems[J]. Nat Rev Microbiol, 2011, 9(6):467-477. [5] Jansen R, Embden JD, Gaastra W, et al.Identification of genes that are associated with DNA repeats in prokaryotes[J]. Mol Microbiol, 2002, 43(6):1565-1575. [6] Alkhnbashi OS, Shah SA, Garrett RA, et al.Characterizing leader sequences of CRISPR loci[J]. Bioinformatics, 2016, 32(17):i576-i585. [7] Lander ES.The Heroes of CRISPR[J]. Cell, 2016, 164(1-2):18-28. [8] Haurwitz RE, Jinek M, Wiedenheft B, et al.Sequence- and structure-specific RNA processing by a CRISPR endonuclease[J]. Science, 2010, 329(5997):1355-1358. [9] Nishimasu H, Ran FA, Hsu PD, et al.Crystal structure of Cas9 in complex with guide RNA and target DNA[J]. Cell, 2014, 156(5):935-949. [10] Sander JD, Joung JK.CRISPR-Cas systems for editing, regulating and targeting genomes[J]. Nat Biotechnol, 2014, 32(4):347-355. [11] Hwang WY, Fu Y, Reyon D, et al.Efficient genome editing in zebrafish using a CRISPR-Cas system[J]. Nat Biotechnol, 2013, 31(3):227-229. [12] Li JF, Norville JE, Aach J, et al.Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9[J]. Nat Biotechnol, 2013, 31(8):688-691. [13] Wang H, Yang H, Shivalila CS, et al.One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering[J]. Cell, 2013, 153(4):910-918. [14] Niu Y, Shen B, Cui Y, et al.Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos[J]. Cell, 2014, 156(4):836-843. [15] Manjunath N, Yi G, Dang Y, et al.Newer gene editing technologies toward HIV gene therapy[J]. Viruses, 2013, 5(11):2748-2766. [16] Khalili K, Kaminski R, Gordon J, et al.Genome editing strategies:potential tools for eradicating HIV-1/AIDS[J]. J Neurovirol, 2015, 21(3):310-321. [17] Mali P, Yang L, Esvelt KM, et al.RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121):823-826. [18] Ma Y, Zhang X, Shen B, et al.Generating rats with conditional alleles using CRISPR/Cas9[J]. Cell Res, 2014, 24(1):122-125. [19] Qi LS, Larson MH, Gilbert LA, et al.Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152(5):1173-1183. [20] Gilbert LA, Larson MH, Morsut L, et al.CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes[J]. Cell, 2013, 154(2):442-451. [21] Margolin JF, Friedman JR, Meyer WK, et al.Kruppel-associated boxes are potent transcriptional repression domains[J]. Proc Natl Acad Sci USA, 1994, 91(10):4509-4513. [22] Parsi KM, Hennessy E, Kearns N, et al.Using an inducible CRISPR-dCas9-KRAB effector system to dissect transcriptional regulation in human embryonic stem cells[J]. Methods Mol Biol, 2017, 1507:221-233. [23] Maeder ML, Linder SJ, Cascio VM, et al.CRISPR RNA-guided activation of endogenous human genes[J]. Nat Methods, 2013, 10(10):977-979. [24] Hsu PD, Scott DA, Weinstein JA, et al.DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nat Biotechnol, 2013, 31(9):827-832. [25] Trevino AE, Zhang F.Genome editing using Cas9 nickases[J]. Methods Enzymol, 2014, 546:161-174. [26] Tsai SQ, Wyvekens N, Khayter C, et al.Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing[J]. Nat Biotechnol, 2014, 32(6):569-576. [27] Guilinger JP, Thompson DB, Liu DR.Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification[J]. Nat Biotechnol, 2014, 32(6):577-582. [28] Zetsche B, Gootenberg JS, Abudayyeh OO, et al.Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3):759-771. [29] Ran FA, Cong L, Yan WX, et al.In vivo genome editing using Staphylococcus aureus Cas9[J]. Nature, 2015, 520(7546):186-191. [30] Gootenberg JS, Abudayyeh OO.Nucleic acid detection with CRISPR-Cas13a/C2c2[J], 2017, 356(6336):438-442. [31] 沈彬. 利用CRISPR/Cas9进行基因编辑[D]. 南京:南京大学, 2014. [32] Xue W, Chen S, Yin H, et al.CRISPR-mediated direct mutation of cancer genes in the mouse liver[J]. Nature, 2014, 514(7522):380-384. [33] Lawrence MS, Stojanov P, Mermel CH, et al.Discovery and saturation analysis of cancer genes across 21 tumour types[J]. Nature, 2014, 505(7484):495-501. [34] Blasco RB, Karaca E, Ambrogio C, et al.Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology[J]. Cell Rep, 2014, 9(4):1219-1227. [35] Maddalo D, Manchado E, Concepcion C P, et al.In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system[J]. Nature, 2014, 516(7531):423-427. [36] 汪启翰, 怀聪, 孙瑞林, 等. 利用CRISPR/Cas系统快速高效构建血友病乙小鼠模型[J]. 遗传, 2015, (11):1143-1148. [37] Wu Y, Liang D, Wang Y, et al.Correction of a genetic disease in mouse via use of CRISPR-Cas9[J]. Cell Stem Cell, 2013, 13(6):659-662. [38] Kennedy EM, Bassit LC, Mueller H, et al.Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR/Cas RNA-guided DNA endonuclease[J]. Virology, 2015, 476:196-205. |