Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (8): 1-7.doi: 10.13560/j.cnki.biotech.bull.1985.2017-1142
ZHANG Qi, CHEN Jing, LI Li, ZHAO Ming-zhu, ZHANG Mei-ping, WANG Yi
Received:
2017-12-28
Online:
2018-08-26
Published:
2018-09-04
ZHANG Qi, CHEN Jing, LI Li, ZHAO Ming-zhu, ZHANG Mei-ping, WANG Yi. Research Progress on Plant AP2/ERF Transcription Factor Family[J]. Biotechnology Bulletin, 2018, 34(8): 1-7.
[1] Jofuku KD, Montagu MV, Okamuro JK.Control of Arabidopsis flower and seed development by the homeotic gene APETALA2[J]. Plant Cell, 1994, 6(9):1211-1225. [2] Wessler SR.Homing into the origin of the AP2 DNA binding domain[J]. Trends in Plant Science, 2005, 10(2):54-56. [3] Magnani E, Sjölander K, Hake S. From endonucleases to transcription factors:evolution of the AP2 DNA binding domain in plants[J]. Plant Cell, 2004, 16(9):2265. -2277. [4] Licausi F, Giorgi FM, Zenoni S, et al.Genomic and transcriptomic analysis of the AP2/ERF superfamily in vitis vinifera[J]. BMC Genomics, 2010, 11(1):719-734. [5] Allen MD, Yamasaki K, OhmeTakagi M, et al. A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA[J]. EMBO J, 1998, 17(18):5484-5496. [6] Sakuma Y, Liu Q, Dubouzet JG, et al.DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression[J]. Biochem Biophys Res Commun, 2002, 290(3):998-1009. [7] Stockinger EJ, Gilmour SJ, Thomashow MF.Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proc Nati Acad Sci USA, 1997, 94(3):1035-1040. [8] Ohme-Takagi M, Shinshi H.Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element[J]. Plant Cell, 1995, 7(2):173-182. [9] Welsch R, Maass D, Voegel T, et al.Transcription factor RAP2. 2 and its interacting partner SINAT2:stable elements in the carotenogenesis of Arabidopsis leaves[J]. Plant Physiology, 2007, 145(3):1073-1085. [10] Nakano T, Suzuki K, Fujimura T, et al.Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiology, 2006, 140(2):411-432. [11] Song XM, Li Y, Hou XL.Genome-wide analysis of the AP2/ERF transcription factor superfamily in Chinese cabbage(Brassica rapa ssp. pekinensis)[J]. BMC Genomics, 2013, 14(1):573-586. [12] Agarwal P, Agarwal PK, Nair S, et al.Stress-inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding activity[J]. Mol Genet Genomics, 2007, 277(2):189-198. [13] Wang C, Wang H, Zhang J, et al.A seed-specific AP2-domain transcription factor from soybean plays a certain role in regulation of seed germination[J]. 中国科学:生命科学, 2008, 51(4):336-345. [14] Ohto MA, Fischer RL, Goldberg RB, et al.Control of seed mass by APETALA2[J]. Proc Nati Acad Sci USA, 2005, 102(8):3123-3128. [15] Lasserre E, Jobet E, Llauro C, et al.AtERF38(At2g35700), an AP2/ERF family transcription factor gene from Arabidopsis thaliana, is expressed in specific cell types of roots, stems and seeds that undergo suberization[J]. Plant Physiology & Biochemistry, 2008, 46(12):1051-1061. [16] Qi WW, Sun F, Wang QJ, et al.Rice ethylene-response AP2/ERF factor OsEATB restricts internode elongation by down-regulating a gibberellin biosynthetic gene[J]. Plant Physiology, 2011, 157(1):216-228. [17] Zhao Y, Cheng SF, Song YL, et al.The Interaction between Rice ERF3 and WOX11 promotes crown root development byregulating gene expression involved in cytokinin signaling[J]. Plant Cell, 2015, 27(9):2469-2483. [18] Sun W, Gao D, Xiong Y, et al.Hairy Leaf 6, an AP2/ERF transcription factor, interacts with OsWOX3B and regulates trichome formation in rice[J]. Mol Plant, 2017, 10(11):1417-1433. [19] Krizek BA.AINTEGUMENTA and AINTEGUMENTA-LIKE6 act redundantly to regulate Arabidopsis floral growth and patterning[J]. Plant Physiology, 2009, 150(4):1916-1929. [20] 滕飞. 拟南芥AP2/ERF基因ERF055调控茎端分生组织发育的功能研究[D]. 泰安:山东农业大学, 2013. [21] Colle M, Weng YQ, Kang YY, et al.Variation in cucumber(Cucumis sativus L. )fruit size and shape results from multiple components acting pre-anthesis and post-pollination[J]. Planta, 2017, 246(4):641-658. [22] Wang CH, Xin M, Zhou XY, et al.The novel ethylene-responsive factor CsERF025 affects the development of fruit bending in cucumber[J]. Plant Mol Biol, 2017, 95(4-5):1-13. [23] Yang Z, Tian L, Latoszek GM, et al.Arabidopsis, ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses[J]. Plant Mol Biol, 2005, 4:585-596. [24] Rashotte AM, Mason MG, Hutchison CE, et al.A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway[J]. Proc Nati Acad Sci USA, 2006, 103(29):11081-11085. [25] Iwase A, Mitsuda N, Koyama T, et al.The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis[J]. Current Biology Cb, 2011, 21(6):508-514. [26] Asahina M, Satoh S.Spatially selective hormonal control of RAP2. 6L and ANAC071 transcription factors involved in tissue reunion in Arabidopsis[J]. Proc Nati Acad Sci USA, 2011, 108(38):16128-16132. [27] Lu X, Zhang L, Zhang F, et al.AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea[J]. New Phytol, 2013, 198(4):1191-1202. [28] Menke FL, Champion A, Kijne JW, et al.A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene strinteracts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2[J]. EMBO Journal, 1999, 18(16):4455-4463. [29] 张蒙. 中国红豆杉中JA信号调控紫杉醇生物合成模式研究[D]. 武汉:华中科技大学, 2016. [30] De Sutter V, Vanderhaeghen R, Tilleman S, et al.Exploration of jasmonate signalling via automated and standardized transient expression assays in tobacco cells[J]. Plant Journal for Cell & Molecular Biology, 2005, 44(6):1065-1076. [31] De Boer K, Tilleman S, Pauwels L, et al.APETALA2/ETHYLENE RESPONSE FACTOR and basic helix-loop-helix tobacco transcription factors cooperatively mediate jasmonate-elicited nicotine biosynthesis.[J]. Plant J, 2011, 66(6):1053-1065. [32] Zeng JK, Li X, Xu Q, et al.EjAP2-1, an AP2/ERF gene, is a novel regulator of fruit lignification induced by chilling injury, via interaction with EjMYB transcription factors[J]. Plant Biotechnology Journal, 2015, 13(9):1325-1334. [33] Ma RF, Xiao Y, Lv ZY, et al.AP2/ERF transcription factor, Ii049, positively regulates lignan biosynthesis in isatis indigotica through activating salicylic acid signaling and lignan/lignin pathway genes[J]. Frontiers in Plant Science, 2017, 8:1361-1377. [34] Gilmour SJ, Sebolt AM, Salazar MP, et al.Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation[J]. Plant Physiology, 2000, 124(4):1854-1865. [35] Sharabi SM, Samach A, Porat R, et al.Overexpression of the CBF2 transcriptional activator in Arabidopsis suppresses the responsiveness of leaf tissue to the stress hormone ethylene[J]. Plant Biology, 2010, 12(4):630-638. [36] 张弘. 中国樱桃PpcERF基因克隆与功能研究[D]. 金华:浙江师范大学, 2015. [37] Dossa K, Xin W, Li D, et al.Insight into the AP2/ERF transcription factor superfamily in sesame and expression profiling of DREB subfamily under drought stress[J]. BMC Plant Biology, 2016, 16(1):171-186. [38] Hattori Y, Nagai K, Furukawa S, et al.The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water[J]. Nature, 2009, 460(7258):1026-1030. [39] Park HY, Seok HY, Woo DH, et al.AtERF71/HRE2 transcription factor mediates osmotic stress response as well as hypoxia response in Arabidopsis[J]. Biochem Biophys Res Commun, 2011, 414(1):135-141. [40] Zhao Y, Wei T, Yin KQ, et al.Arabidopsis RAP2. 2 plays an important role in plant resistance to Botrytis cinerea and ethylene responses[J]. New Phytol, 2012, 195(2):450-460. [41] Gu C, Guo ZH, Hao PP, et al.Multiple regulatory roles of AP2/ERF transcription factor in angiosperm[J]. Botanical Studies, 2017, 58(1):6-13. [42] Mishra S, Phukan UJ, Tripathi V, et al.PsAP2 an AP2/ERF family transcription factor from Papaver somniferum enhances abiotic and biotic stress tolerance in transgenic tobacco[J]. Plant Mol Biol, 2015, 89(1-2):173-186. [43] Xiao YY, Chen JY, Kuang JF, et al.Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes[J]. J Exp Bot, 2013, 64(8):2499-2510. [44] Smaczniak C, Li N, Boeren S, et al.Proteomics-based identification of low-abundance signaling and regulatory protein complexes in native plant tissues[J]. Nat Protoc, 2012, 7(12):2144-2158. |
[1] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[2] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[3] | LIU Kui, LI Xing-fen, YANG Pei-xin, ZHONG Zhao-chen, CAO Yi-bo, ZHANG Ling-yun. Functional Study and Validation of Transcriptional Coactivator PwMBF1c in Picea wilsonii [J]. Biotechnology Bulletin, 2023, 39(5): 205-216. |
[4] | ZHANG Xin-bo, CUI Hao-liang, SHI Pei-hua, GAO Jin-chun, ZHAO Shun-ran, TAO Chen-yu. Research Progress in Low-input Chromatin Immunoprecipitation Assay [J]. Biotechnology Bulletin, 2023, 39(4): 227-235. |
[5] | WEI Ming WANG Xin-yu WU Guo-qiang ZHAO Meng. The Role of NAD-dependent Deacetylase SRT in Plant Epigenetic Inheritance Regulation [J]. Biotechnology Bulletin, 2023, 39(4): 59-70. |
[6] | CUI Jun-mei, WEI Jia-ping, DONG Xiao-yun, WANG Ying, ZHENG Guo-qiang, LIU Zi-gang. PIP/PIPL: A Kind of Endogenous Plant Peptide Regulating Plant Stress Response and Development [J]. Biotechnology Bulletin, 2023, 39(3): 35-42. |
[7] | ZHAO Meng-liang, GUO Yi-ting, REN Yan-jing. Identification and Analysis of WRKY Transcription Factor Family Genes in Helianthus tuberosus [J]. Biotechnology Bulletin, 2023, 39(2): 116-125. |
[8] | YAN Xiong-ying, WANG Zhen, WANG Xia, YANG Shi-hui. Microbial Sulfur Metabolism and Stress Resistance [J]. Biotechnology Bulletin, 2023, 39(11): 150-167. |
[9] | ZHANG Hong-hong, FANG Xiao-feng. Advances in the Regulation of Stress Sensing and Responses by Phase Separation in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 44-53. |
[10] | CHEN Guang-xia, LI Xiu-jie, JIANG Xi-long, SHAN Lei, ZHANG Zhi-chang, LI Bo. Research Progress in Plant Small Signaling Peptides Involved in Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(11): 61-73. |
[11] | HAN Fang-ying, HU Xin, WANG Nan-nan, XIE Yu-hong, WANG Xiao-yan, ZHU Qiang. Research Progress in Response of DREBs to Abiotic Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(11): 86-98. |
[12] | FENG Ce-ting, JIANG Lyu, LIU Xing-ying, LUO Le, PAN Hui-tang, ZHANG Qi-xiang, YU Chao. Identification of the NAC Gene Family in Rosa persica and Response Analysis Under Drought Stress [J]. Biotechnology Bulletin, 2023, 39(11): 283-296. |
[13] | LIU Yuan-yuan, WEI Chuan-zheng, XIE Yong-bo, TONG Zong-jun, HAN Xing, GAN Bing-cheng, XIE Bao-gui, YAN Jun-jie. Characteristics of Class II Peroxidase Gene Expression During Fruiting Body Development and Stress Response in Flammulina filiformis [J]. Biotechnology Bulletin, 2023, 39(11): 340-349. |
[14] | CHEN Hao-ting, ZHANG Yu-jing, LIU Jie, DAI Ze-min, LIU Wei, SHI Yu, ZHANG Yi, LI Tian-lai. Functional Analysis of WRKY6 Gene in Tomato Under Low-phosphorus Stress [J]. Biotechnology Bulletin, 2023, 39(10): 136-147. |
[15] | LI Jian-jian, HE Chen-jing, HUANG Xiao-ping, XIANG Tai-he. Research Progress in the Regulation of Development and Stress Response by Long Non-coding RNAs in Plants [J]. Biotechnology Bulletin, 2023, 39(1): 48-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||