Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (12): 144-151.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0525
• Orginal Article • Previous Articles Next Articles
ZHANG Dan, MA Yu-hua
Received:
2019-06-14
Online:
2019-12-26
Published:
2019-12-03
ZHANG Dan, MA Yu-hua. The Role of NAC Transcription Factors in Plant Response to Abiotic Stress[J]. Biotechnology Bulletin, 2019, 35(12): 144-151.
[1] Zhu J.Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2):313-324. [2] Pérez-Clemente RM, Vives V, Zandalinas SI, et al.Biotechnological approaches to study plant responses to stress[J]. BioMed Research International, 2013, 2013(1):654120. [3] Ye GS, Ma YH, Feng ZP, et al.Transcriptomic analysis of drought stress responses of sea buckthorn(Hippophae rhamnoides subsp. sinensis)by RNA-Seq[J]. PLoS One, 2018, 13(8):e202213. [4] Shinozaki K, Yamaguchishinozaki K.Gene networks involved in drought stress response and tolerance[J]. J Exp Bot, 2007, 58(2):221. [5] Mun B, Lee S, Park E, et al.Analysis of transcription factors among differentially expressed genes induced by drought stress in Populus davidiana[J]. 3 Biotech, 2017, 7(3):209. [6] Banerjee A, Roychoudhury A.Abscisic-acid-dependent basic leucine zipper(bZIP)transcription factors in plant abiotic stress[J]. Protoplasma, 2017, 254(1):3-16. [7] 王春雨, 张茜. 植物NAC转录因子功能研究进展[J]. 生物技术通报, 2018, 34(11):14-20. [8] Su H, Zhang S, Yuan X, et al.Genome-wide analysis and identification of stress-responsive genes of the NAM-ATAF1, 2-CUC2 transcription factor family in apple[J]. Plant Physiology & Biochemistry, 2013, 71(2):11-21. [9] Cenci A, Guignon V, Roux N, et al.Genomic analysis of NAC transcription factors in banana(Musa acuminata)and definition of NAC orthologous groups for monocots and dicots[J]. Plant Mole Biol, 2014, 85(1/2):63-80. [10] Le DT, Nishiyama R, Watanabe Y, et al.Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress[J]. DNA Research, 2011, 18(4):263-276. [11] Mao C, Lu S, Lv B, et al.A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis[J]. Plant Physiology, 2017, 174(3):1747-1763. [12] Li XL, Yang X, Hu YX, et al.A novel NAC transcription factor from Suaeda liaotungensis K. enhanced transgenic Arabidopsis drought, salt, and cold stress tolerance[J]. Plant Cell Reports, 2014, 33(5):767-778. [13] Swati P, Pranav Pankaj S, Srivastava PS, et al.NAC proteins:regulation and role in stress tolerance[J]. Trends in Plant Science, 2012, 17(6):369-381. [14] Guerin C, Roche J, Allard V, et al.Genome-wide analysis, expansion and expression of the NAC family under drought and heat stresses in bread wheat(T. aestivum L.)[J]. PLoS One, 2019, 14(3):e213390. [15] Li Z, Zhang J, Li J, et al.The functional and regulatory mechanisms of the thellungiella salsuginea ascorbate peroxidase 6(TsAPX6)in response to salinity and water deficit stresses[J]. PLoS One, 2016, 11(4):e154042. [16] Wu J, Wang L, Wang S.Comprehensive analysis and discovery of drought-related NAC transcription factors in common bean[J]. BMC Plant Biol, 2016, 16(1):193. [17] Thirumalaikumar VP, Devkar V, Mehterov N, et al.NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato[J]. Plant Biotechnol J, 2018, 16(2):354-366. [18] Shahnejat-Bushehri S, Tarkowska D, Sakuraba Y, et al.Arabidopsis NAC transcription factor JUB1 regulates GA/BR metabolism and signalling[J]. Nature Plants, 2016, 2(3):16013. [19] Tak H, Negi S, Ganapathi TR.Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance[J]. Protoplasma, 2017, 254(2):803-816. [20] Hong YR, Zhang HJ, Huang L, et al.Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice[J]. Front Plant Sci, 2016, 7:4. doi:10.33891fpls.2016.00004. [21] Mao X, Chen S, Li A, et al.Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis[J]. PLoS One, 2014, 9(1):e84359. [22] Parida AK, Das AB.Salt tolerance and salinity effects on plants:a review[J]. Ecotoxicology and Environmental Safety, 2005, 60(3):324-349. [23] Jiang Z, Zhu S, Ye R, et al.Relationship between NaCl- and H2O2-induced cytosolic Ca2+ increases in response to stress in Arabidopsis[J]. PLoS One, 2013, 8(10):e76130. [24] Shu K, Qi Y, Chen F, et al.Salt stress represses soybean seed germination by negatively regulating GA biosynthesis while positively mediating ABA biosynthesis[J]. Front Plant Sci, 2017, 8:1372. [25] Dou L, He K, Higaki T, et al.Ethylene signaling modulates cortical microtubule reassembly in response to salt stress[J]. Plant Physiology, 2018, 176(3):1124-2017. [26] An JP, Yao JF, Xu RR, et al.An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response[J]. Physiol Plant, 2018, 164(3):279-289. [27] Liu Y, Sun J, Wu Y.Arabidopsis ATAF1 enhances the tolerance to salt stress and ABA in transgenic rice[J]. Journal of Plant Research, 2016, 129(5):955-962. [28] Xu C, Yaofeng W, Bo L, et al.The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway[J]. Plant & Cell Physiology, 2014, 55(3):604. [29] Song S, Chen Y, Chen J, et al.Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress[J]. Planta, 2011, 234(2):331-345. [30] Zhang X, Cheng Z, Zhao K, et al.Functional characterization of poplar NAC13 gene in salt tolerance[J]. Plant Science, 2019, 281:1-8. [31] Xu Z, Gongbuzhaxi, Wang C, et al.Wheat NAC transcription factor TaNAC29 is involved in response to salt stress[J]. Plant Physiology and Biochemistry, 2015, 96:356-363. [32] Han X, Feng Z, Xing D, et al.Two NAC transcription factors from Caragana intermedia altered salt tolerance of the transgenic Arabidopsis[J]. BMC Plant Biology, 2015, 15(1):208. [33] Dowd WW, King FA, Denny MW.Thermal variation, thermal extremes and the physiological performance of individuals[J]. Journal of Experimental Biology, 2015, 218(Pt12):1956. [34] Sarvajeet Singh G, Narendra T.Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiol Biochem, 2010, 48(12):909-930. [35] Yuan P, Yang T, Poovaiah BW.Calcium signaling-mediated plant response to cold stress[J]. International Journal of Molecular Sciences, 2018, 19(12):3896. [36] Kazemi-Shahandashti SS, Maali-Amiri R.Global insights of protein responses to cold stress in plants:Signaling, defence, and degradation[J]. Journal of Plant Physiology, 2018, 226:123. [37] Ruelland E, Vaultier MN, Zachowski A, et al.Chapter 2 cold signalling and cold acclimation in plants[J]. Advances in Botanical Research, 2009, 49:35-150. [38] Shi Y, Ding Y, Yang S.Molecular regulation of CBF signaling in cold acclimation[J]. Trends in Plant Science, 2018, 23(7):S314931008. [39] Knight MR, Heather K.Low-temperature perception leading to gene expression and cold tolerance in higher plants[J]. New Phytologist, 2012, 195(4):737-751. [40] Zhuo X, Zheng T, Zhang Z, et al.Genome-wide analysis of the NAC transcription factor gene family reveals differential expression patterns and cold-stress responses in the woody plant Prunus mume[J]. Genes, 2018, 9(10):494. [41] You J, Chan Z.ROS regulation during abiotic stress responses in crop plants[J]. Front Plant Sci, 2015, 6(4):690-695. [42] Huang L, Hong Y, Zhang H, et al.Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance[J]. BMC Plant Biology, 2016, 16(1):203. [43] An J, Li R, Qu F, et al.An apple NAC transcription factor negati-vely regulates cold tolerance via CBF-dependent pathway[J]. Journal of Plant Physiology, 2018, 221:74-80. [44] Chauhan H, Khurana N, Tyagi AK, et al.Identification and characterization of high temperature stress responsive genes in bread wheat(Triticum aestivum L.)and their regulation at various stages of development[J]. Plant Mole Biol, 2011, 75(1/2):35-51. [45] Smertenko A, Draber P, Viklicky V, et al.Heat stress affects the organization of microtubules and cell division in Nicotiana tabacum cells[J]. Plant Cell & Environment, 2010, 20(12):1534-1542. [46] Wahid A, Gelani S, Ashraf M, et al.Heat tolerance in plants:An overview[J]. Environmental & Experimental Botany, 2007, 61(3):199-223. [47] Guan Q, Yue X, Zeng H, et al.The protein phosphatase RCF2 and its interacting partner NAC019 are critical for heat stress - responsive gene regulation and thermotolerance in Arabidopsis[J]. Plant Cell, 2014, 26(1):438-453. [48] Guo W, Zhang J, Zhang N, et al.The wheat NAC transcription factor TaNAC2L is regulated at the transcriptional and post-translational levels and promotes heat stress tolerance in transgenic Arabidopsis[J]. PLoS One, 2015, 10(8):e135667. [49] De Pinto MC, Locato V, De GL.Redox regulation in plant programmed cell death[J]. Plant Cell & Environment, 2012, 35(2):234-244. [50] Lee S, Lee H, Huh SU, et al.The Arabidopsis NAC transcription factor NTL4 participates in a positive feedback loop that induces programmed cell death under heat stress conditions[J]. Plant Science, 2014, 227:76-83. [51] Lv X, Lan S, Guy KM, et al.Global expressions landscape of NAC transcription factor family and their responses to abiotic stresses in Citrullus lanatus[J]. Scientific Reports, 2016, 6:30574. [52] Shao H, Wang H, Tang X.NAC transcription factors in plant multiple abiotic stress responses:progress and prospects[J]. Front Plant Sci, 2015, 6:902. |
[1] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[2] | ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein [J]. Biotechnology Bulletin, 2023, 39(6): 208-216. |
[3] | GUO Yi-ting, ZHAO Wen-ju, REN Yan-jing, ZHAO Meng-liang. Identification and Analysis of NAC Transcription Factor Family Genes in Helianthus tuberosus L. [J]. Biotechnology Bulletin, 2023, 39(6): 217-232. |
[4] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
[5] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[6] | ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(5): 224-232. |
[7] | SHI Jian-lei, ZAI Wen-shan, SU Shi-wen, FU Cun-nian, XIONG Zi-li. Identification and Expression Analysis of miRNA Related to Bacterial Wilt Resistance in Tomato [J]. Biotechnology Bulletin, 2023, 39(5): 233-242. |
[8] | ZHANG Xin-bo, CUI Hao-liang, SHI Pei-hua, GAO Jin-chun, ZHAO Shun-ran, TAO Chen-yu. Research Progress in Low-input Chromatin Immunoprecipitation Assay [J]. Biotechnology Bulletin, 2023, 39(4): 227-235. |
[9] | YANG Chun-hong, DONG Lu, CHEN Lin, SONG Li. Characterization of Soybean VAS1 Gene Family and Its Involvement in Lateral Root Development [J]. Biotechnology Bulletin, 2023, 39(3): 133-142. |
[10] | ZHAO Meng-liang, GUO Yi-ting, REN Yan-jing. Identification and Analysis of WRKY Transcription Factor Family Genes in Helianthus tuberosus [J]. Biotechnology Bulletin, 2023, 39(2): 116-125. |
[11] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[12] | XU Rui, ZHU Ying-fang. The Key Roles of Mediator Complex in Plant Responses to Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 54-60. |
[13] | CHEN Guang-xia, LI Xiu-jie, JIANG Xi-long, SHAN Lei, ZHANG Zhi-chang, LI Bo. Research Progress in Plant Small Signaling Peptides Involved in Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(11): 61-73. |
[14] | HAN Fang-ying, HU Xin, WANG Nan-nan, XIE Yu-hong, WANG Xiao-yan, ZHU Qiang. Research Progress in Response of DREBs to Abiotic Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(11): 86-98. |
[15] | SUN Yu-tong, LIU De-shuai, QI Xun, FENG Mei, HUANG Xu-zheng, YAO Wen-kong. Advances in Jasmonic Acid Regulating Plant Growth and Development as Well as Stress [J]. Biotechnology Bulletin, 2023, 39(11): 99-109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||