Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (4): 101-107.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0829
Previous Articles Next Articles
HE Hu-yi, TANG Zhou-ping, YANG Xin, FAN Wu-jing, TAN Guan-ning, LI Li-shu, HE Xin-min
Received:
2018-09-25
Online:
2019-04-26
Published:
2019-05-05
HE Hu-yi, TANG Zhou-ping, YANG Xin, FAN Wu-jing, TAN Guan-ning, LI Li-shu, HE Xin-min. Research Progress on Potato Starch Synthesis and Degradation[J]. Biotechnology Bulletin, 2019, 35(4): 101-107.
[1] Fernie AR, Willmitzer L, Trethewey RN.Sucrose to starch:a transition in molecular plant physiology[J]. Trends Plant Sci, 2002, 7(1):35-41. [2] Sweetlove LJ, Müller-Röeber B, Willmitzer L, Hill SA.The contribution of adenosine 5'-diphosphoglucose pyrophosphorylase to the control of starch synthesis in potato tubers[J]. Planta, 1999, 209:330-337. [3] Stitt M.Progress in understanding and engineering primary plant metabolism[J]. Curr Opin Biotechnol, 2013, 24(2):229-238. [4] 白桦, 崔雪琼, 白少星, 姚新灵. 马铃薯AGPase活力反馈调控光合速率定量分析[J]. 生物技术通报, 2014(11):125-129. [5] 成善汉, 苏振洪, 谢从华, 柳俊. 淀粉-糖代谢酶活性变化对马铃薯块茎还原糖积累及加工品质的影响[J]. 中国农业科学, 2004, 37(12):1904-1910. [6] 陈国梁, 张金文, 王蒂. 马铃薯gbss、ssÒ和ssÓ基因片段的融合及其RNAi载体的构建[J]. 中国生物工程杂志, 2008, 28(8):51-56. [7] 戴卫列, 邓炜, 崔伟英, 等. 马铃薯GBSS基因的克隆与DNA顺序分析[J]. 植物学报, 1996, 38(10):777-784. [8] 李淑洁, 张金文, 王煜, 等. 一个新的马铃薯GBSS基因5'侧翼序列克隆及调控活性研究[J]. 中国马铃薯, 2005, 19(3):129-133. [9] 宋东光, 孙国枫, 单海燕, 等. 马铃薯GBSS基因5'侧翼区调控作用的研究[J]. 植物学报, 1998, 40(9):796-802. [10] Edwards A, Fulton DC, Hylton CM, et al.A combined reduction in activity of starch synthases II and III of potato has novel effects on the starch of tubers[J]. Plant J, 1999, 17(3):251-261. [11] 杨涛, 张宁, 栗亮, 等. 马铃薯可溶性淀粉合成酶SSIII基因克隆及生物信息学分析[J]. 分子植物育种, 2009, 7(3):545-549. [12] Kristensen M, Lok F, Planchot V, et al.Isolation and characterisation of the gene encoding the starch debranching enzyme limit dextrinase from germinating barley[J]. Biochim Biophys Acta, 1999, 1431:538-546. [13] Kim KN, Fisher DK, Gao M, Guiltinan MJ.Genome organization and promoter activity of the maize starch branching enzyme I gene[J]. Gene, 1998, 216:233-243. [14] Bae JM, Liu JR.Molecular cloning and characterization of two novel iosoforms of the small subunit of ADPglucose pyrophosphorylase from sweet potato[J]. Mol Gen Genet, 1997(2):179-185. [15] Harn CH, Bae JM, Lee SS, et al.Presence of multiple cDNAs encoding an isoform of ADP-glucose pyrophosphorylase large subunit from sweet potato and characterization of expression levels[J]. Plant Cell Physiol, 2000, 41(11):1235-1242 . [16] Dry I, Smith A, Edward A, et al.Characterization of cDNAs encoding two isoforms of granule-bound starch synthase which show differential expression in developing storage organs of pea and potato[J]. Plant J, 1992, 2(2):193-202. [17] Kossmann J, Abel GJW, Springer F, Lloyd JR, Willmitzer L.Cloning and functional analysis of a cDNA encoding a starch synthase from potato(Solanum tuberosum L.)that is predominantly expressed in leaf tissue[J]. Planta, 1999, 208:503-511. [18] Larsson CT, Khoshnoodi J, Ek B, et al.Molecular cloning and characterization of starch-branching enzyme II from potato[J]. Plant Mol Biol, 1998, 37(3):505-511. [19] Abel GJW, Springer F, Willmitzer L, Kossmann J.Cloning and fuctional analysis of a cDNA encoding a novel 139 kDa starch synthase from potato(Solanum tuberosum L.)[J]. Plant J, 1996, 10(6):981-991. [20] Marshall J, Sidebottom C, Debet M, et al.Identification of the major starch synthase in the soluble fraction of potato tubers[J]. Plant Cell, 1996, 8(7):1121-1135. [21] Yang T, Zhang N, Li L, et al.Cloning and bioinformatics analysis of soluble starch synthase SSIII gene in potato[J]. Mol Plant Breed, 2009, 7:545-549. [22] Jobling SA, Westcott RJ, Tayal A, Jeffcoat R, Schwall GP.Production of a freeze-thaw-stable potato starch by antisense inhibition of three starch synthase genes[J]. Nature Biotechnol, 2002, 20(3):295-299. [23] Lee SS, Bae JM, Oh MS, et al.Isolation and characterization of polymorphic cDNAs parially encoding ADP-glucose pyrophosphorylase(AGPase)large subunit from sweet potato[J]. Mol Cells, 2000, 10(1):108-112. [24] Silver DM, Kotting O, Moorhead GBG.Phosphoglucan phosphatase function sheds light on starch degradation[J]. Trends Plant Sci, 2014, 19(7):471-478. [25] Preiss J.Regulation of the biosynthesis and degradation of starch[J]. Annu Rev Plant Physiol, 1982, 33:431-454. [26] Streb S, Zeeman SC.Starch metabolism in Arabidopis[J]. The Arabidopsis Book, 2012, e0160. [27] Monroe JD, Storm AR, Badley EM, et al.β-amylase 1 and β-amylase 3 are plastidic starch hydrolases in Arabidopsis that seem to be adapted for different thermal, pH, and stress conditions[J]. Plant Physiol, 2014, 166:1748-1763. [28] Bagnaresi P, Moschella A, Beretta O, et al.Heterologous microarray experiments allow the identification of the early events associated with potato tuber cold sweetening[J]. BMC Genomics, 2008, 9:176-198. [29] Zhang H, Hou J, Liu J, et al.Amylase anlaysis in potato starch degradation during cold storage and sprouting[J]. Potato Res, 2014, 57:47-58. [30] Ritte G, Heydenreich M, Mahlow S, et al.Phosphorylation of C6-and C3-position of glycosyl residues in starch is catalysed by distinct dikinases[J]. FEBS Lett, 2006, 580:4872-4876. [31] Liu X, Zhang C, Ou YB, et al.Systematic analysis of potato acid invertase genes reveals that a cold-responsive member, StvacINV1, regulates cold-induced sweetening of tubers[J]. Mol Genet Genomics, 2011, 286:109-118. [32] Sweetlove LJ, Burrell MM, Rees T.Characterization of transgenic potato(Solanum tuberosum)tubers with increased ADP-Glucose pyrophosphorylase[J]. Biochemistry J, 1996, 320:478-492. [33] Tjaden J, Mohlmann T, Kampfenkel K.Altered plastidic ATP/ADP-transporter activity influence potato(Solanum tuberosum L.)tuber morphology, yield and composition of tuber starch[J]. Plant J, 1998, 16:531-540. [34] 宋波涛, 谢从华, 柳俊. 马铃薯sAGP基因表达对块茎淀粉和还原糖含量的影响[J]. 中国农业科学, 2005, 38(7):1439-1446. [35] 刘廷国, 李斌, 谢笔钧. 转AGPase基因马铃薯淀粉溶液行为及热特性比较研究[J]. 作物学报, 2006, 32(2):310-312. [36] Lorbeth R, Ritte G, Willmitzer L, et al.Inhibition of a starch-gran-ule-bound protein leads to modified starch and repression of cold sweetening[J]. Nat Biotechnol, 1998, 16:473-477. [37] Zhang H, Liu J, Hou J, et al.The potato amylase inhibitor gene SbAI regulates cold-induced sweetening in potato tubers by modulating amylase activity[J]. Plant Biotechnol J, 2014, 12:984-993. [38] 崔雪琼. 重组glgC基因调控块茎淀粉生物合成研究[M]. 银川:宁夏大学, 2012. [39] Vardy KA, Emes MJ, Burrell MM.Starch synthesis in potato tubers transformed with the wheat genes for ADPglucose pyrophosphorylase[J]. Functional Plant Biol, 2002, 29(8):975-985. [40] Muller-Rober B, Sonnewald U, Willmitzer L.Inhibition of AGPase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber-storage protein genes[J]. EMBO J, 1992, 11:1229-1238. [41] Scheidig A, Frohlich A, Schulze S, et al.Downregulation of a chloroplast-targeted β-amylase leads to a starch-excess phenotype in leaves[J]. Plant J, 2002, 30:581-591. [42] Bustos R, Fahy B, Hylton CM, et al.Starch granule initiation is controlled by a heteromultimeric isoamylase in potato tubers[J]. Proc Natl Acad Sci USA, 2004, 101:2215-2220. [43] Ferreira SJ.Transcriptome based analysis of starch metabolism in Solanum tuberosum[D]. Friedrich-Alexander-Universitat Erlangen-Nurnberg, 2011. [44] Holen T, Amarzguioui M, Wiiger MT, et al.Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor[J]. Nucleic Acids Res, 2002, 30(8):1757-1766. [45] Heilersig HJB, Loonen A, Bergervoet M, et al.Post-transcriptional gene silencing of GBSSI in potato:effects of size and sequence of the inverted repeats[J]. Plant Mol Biol, 2006, 60:647-662. [46] Baba T.Identification, cDNA cloning, and gene expression of soluable starch synthase in rice(Oryza sativa L.)immature seeds[J]. Plant Physiol, 1993, 103:565-573. [47] 杜宏辉. 可溶性淀粉合成酶SSIII基因对马铃薯的遗传转化[D]. 兰州:甘肃农业大学, 2011:7-10. [48] Abel GJW, Springer F, Willmitzer L, et al.Cloning and functional analysis of a cDNA encoding a novel 139 kDa starch synthase from potato(Solanum tuberosum L.)[J]. Plant J, 1996, 10(6):981-991. [49] Blauth SL, Yao Y, Klucinec JD, et al.Identification of mutator insertional mutants of starch-branching enzymes in corn[J]. Plant Physiol, 2001, 125(3):1396-1405. [50] Wolters AMA, Janssen EM, Rozeboom-Schippers MGM, et al.Composition of endogenous alleles can influence the level of antisense inhibition of granule-bound starch synthase gene expression in tetraploid potato plants[J]. Mol Breeding, 1998, 4(4):343-358. [51] 蔺琰东. 马铃薯GBSSI基因的ihpRNAi载体转化试管薯片及转基因块茎相关生理分析[D]. 兰州:甘肃农业大学, 2011. [52] 杜宏辉, 文义凯, 张宁, 等. 可溶性淀粉合成酶SSIII基因对马铃薯的遗传转化[J]. 基因组学与应用生物学, 2011, 30(3):303-307. [53] Andersson M, Melander M, Pojmark P, et al.Targeted gene suppression by RNA interference:An efficient method for production of highamylose potato lines[J]. J Biotechnol 2006, 123(2):137-148. [54] Xu X, Dees D, Dechesne A, et al.Starch phosphorylation plays an important role in starch biosynthesis[J]. Carbohyd Polym, 2017, 157:1628-1637. [55] Zhang H, Hou J, Liu J, et al.The roles of starch metabolic pathways in the cold-induced sweetening process in potatoes[J]. Starch-Starke, 2016, doi:10. 1002/star. 201600194. [56] Liu XY, Rocha-Sosa M, Hummel S, et al.A detailed study of the regulation and evolution of the two classes of patatin genes in Solanum tuberosum L.[J]. Plant Mol Biol, 1991, 17(6):1139-1154. [57] Clasen BM, Stoddard TJ, Luo S, et al.Improving cold storage and processing traits in potato through targeted gene knockout[J]. Plant Biotechnol J, 2016, 14:169-176. [58] Carpenter MA, Joyce NI, Genet RA, et al.Starch phosphorylation in potato tubers is influenced by allelic variation in the genes encoding glucan water dikinase, starch branching enzymes I and II, and starch synthase III[J]. Front Plant Sci, 2015, 6:143. |
[1] | LIU Wen-jin, MA Rui, LIU Sheng-yan, YANG Jiang-wei, ZHANG Ning, SI Huai-jun. Cloning of StCIPK11 Gene and Analysis of Its Response to Drought Stress in Solanum tuberosum [J]. Biotechnology Bulletin, 2023, 39(9): 147-155. |
[2] | XU Jing, ZHU Hong-lin, LIN Yan-hui, TANG Li-qiong, TANG Qing-jie, WANG Xiao-ning. Cloning of IbHQT1 Promoter and Identification of Upstream Regulatory Factors in Sweet Potato [J]. Biotechnology Bulletin, 2023, 39(8): 213-219. |
[3] | YE Yun-fang, TIAN Qing-yin, SHI Ting-ting, WANG Liang, YUE Yuan-zheng, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Biosynthesis and Regulation of β-ionone in Plants [J]. Biotechnology Bulletin, 2023, 39(8): 91-105. |
[4] | TAO Na, LI Mao-xing, GUO Hua-chun. Optimization of Sweet Potato Genetic Transformation System Mediated by Agrobacterium rhizogenes [J]. Biotechnology Bulletin, 2023, 39(10): 175-183. |
[5] | YU Guo-hong, LIU Peng-cheng, LI Lei, LI Ming-zhe, CUI Hai-ying, HAO Hong-bo, GUO An-qiang. Physiological Responses of Potato in Different Genotypes to Drought Stress [J]. Biotechnology Bulletin, 2022, 38(5): 56-63. |
[6] | MA Yan-qin, QIU Yi-bin, LI Sha, XU Hong. Research Progress in the Biosynthesis and Metabolic Engineering of Hyaluronic Acid [J]. Biotechnology Bulletin, 2022, 38(2): 252-262. |
[7] | YUAN Kai, HE Wei, YANG Yun-li, ZHU Wei-yu, PENG Chao, AN Tai, LI Li, ZHOU Wei-qiang. Research Progress on Biosynthesis and Metabolic Regulation of Ganoderic Acids [J]. Biotechnology Bulletin, 2021, 37(8): 46-54. |
[8] | GAO Bo, MA Juan, LI Xiu-hua, LI Jiao-sheng, WANG Rong-yan, CHEN Shu-long. Cloning and Functional Analysis of Dd-mel-26 Gene from Ditylenchus destructor [J]. Biotechnology Bulletin, 2021, 37(7): 107-117. |
[9] | ZHENG Ying-zhuan, LÜ Yan, YANG Dong-xu, LI Guo-wei, WANG Hong-yang, LI Can-hui. Study on the Identification of Potato Ploidy Using Flow Cytometry Based on Liquid Nitrogen Grinding Method [J]. Biotechnology Bulletin, 2021, 37(1): 282-288. |
[10] | LI Pei-gen, YAO Ya-qian, SONG Ji-xiang, WANG Tian-qi, ZHOU Bo, WANG Bing, LIN Rong-shan. Isolation and Identification of IAA-producing Bacillus sp on Potato Rhizosphere and Its Growth-promoting Effect [J]. Biotechnology Bulletin, 2020, 36(9): 109-116. |
[11] | LI Jing-shu, ZHAO Jia. Optimization of Fermentation Conditions of Biocontrol Bacterium ML-3 Antifungal Protein and Its Application [J]. Biotechnology Bulletin, 2020, 36(6): 83-92. |
[12] | YE Ming-wang, LI Can-hui, GONG Ming. Applications and Prospect of Genome Editing Techniques in Precise Potato Molecular Breeding [J]. Biotechnology Bulletin, 2020, 36(3): 9-17. |
[13] | PANG Peng-xiang, CHANG Yan-nan, YU Rui-min, GAO Gang. Cloning,Expression and Bioinformatics Analyses of StSRP1 Gene in Solanum tuberosum [J]. Biotechnology Bulletin, 2019, 35(7): 10-16. |
[14] | ZHANG Wei, LI Zhi-xin, FU Chun-jiang, LIU Wei-ping. Development of a Colloidal Gold Immunochromatographic Test Strip for the Detection of Potato Virus S [J]. Biotechnology Bulletin, 2019, 35(12): 184-188. |
[15] | LEI Zhao-xia, LIU Jing, BAI Yi-ping, TANG Wei, WANG Hong-yang. Cloning and Functional Analysis of a Potato Ubiquitin-conjugating Enzyme Gene StUBC17 [J]. Biotechnology Bulletin, 2019, 35(1): 35-41. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||