Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (1): 167-174.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0635
Previous Articles Next Articles
YU Jie1, LIU Xin1, ZHANG Chi1, ZHAO Ji-chun1,2, LI Fu-hua1,2, MING Jian1,2
Received:
2019-07-11
Online:
2020-01-26
Published:
2020-01-08
YU Jie, LIU Xin, ZHANG Chi, ZHAO Ji-chun, LI Fu-hua, MING Jian. Anti-aging Effect and Molecular Mechanism of Probiotics:A Review[J]. Biotechnology Bulletin, 2020, 36(1): 167-174.
[1] Georges J, Liesbeth V.Evidence for the hallmarks of human aging in replicatively aging yeast[J]. Microbial Cell, 2016, 3(7):263-274. [2] Park MR, Yun HS, Son SJ, et al.Short communication:Development of a direct in vivo screening model to identify potential probiotic bacteria using Caenorhabditis elegans[J]. Journal of Dairy Science, 2014, 97(11):6828-6834. [3] Pangrazzi L, Meryk A, Naismith E, et al.“Inflamm-aging” influences immune cell survival factors in human bone marrow[J]. European Journal of Immunology, 2017, 47(3):481-492. [4] Shao P, Guo NF, Wang C, et al.Aflatoxin G(1)induced TNF-alpha-dependent lung inflammation to enhance DNA damage in alveolar epithelial cells[J]. Journal of Cellular Physiology, 2019, 234(6):9194-9206. [5] Zhao J, Zheng HY, Zhong G, et al.Ursolic acid exhibits anti-inflammatory effects through blocking TLR4-MyD88 pathway mediated by autophagy[J]. Cytokine, 2019, 123:154726. [6] Watanabe M, Toyomura T, Wake H, et al.Advanced glycation end products attenuate the function of tumor necrosis factor-like weak inducer of apoptosis to regulate the inflammatory response[J]. Molecular and Cellular Biochemistry, 2017, 434(1-2):153-162. [7] Bui TT, Rodriguez BE, Talero E, et al.Anti-inflammatory effect of resveratrol in old mice liver[J]. Experimental Gerontology, 2015, 64:1-7. [8] Kasuya A, Tokura Y.Attempts to accelerate wound healing[J]. Journal of Dermatological Science, 2014, 76(3):169-172. [9] Kuilman T, Michaloglou C, Vredeveld LC, et al.Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network[J]. Cell, 2008, 133(6):1019-1031. [10] Lee JY, Paik IY, Kim JY.Voluntary exercise reverses immune aging induced by oxidative stress in aging mice[J]. Experimental Gerontology, 2019, 115:148-154. [11] Baeeri M, Bahadar H, Rahimifard M, et al.α-Lipoic acid prevents senescence, cell cycle arrest, and inflammatory cues in fibroblasts by inhibiting oxidative stress[J]. Pharmacological Research, 2019, 141:214-223. [12] Garrido A, Cruces J, Ceprian N, et al.Oxidative-inflammatory stress in immune cells from adult mice with premature aging[J]. Int J Mol Sci, 2019, 20(3):769-792. [13] Salminen A, Kaarniranta K, Kauppinen A.Immunosenescence:the potential role of myeloid-derived suppressor cells(MDSC)in age-related immune deficiency[J]. Cellular and Molecular Life Sciences, 2019, 76(10):1901-1918. [14] Vida C, Martinez DT, Cruces J, et al.Role of macrophages in age-related oxidative stress and lipofuscin accumulation in mice[J]. Redox Biology, 2017, 12:423-437. [15] Landete José María, Pilar G, Rodríguez Eva, et al.Probiotic bacteria for healthier aging:immunomodulation and metabolism of phytoestrogens[J]. BioMed Research International, 2017, 2017. doi:10. 1155/2017/5939818. [16] Michael C, Anthony B.The impact of diet and lifestyle on gut microbiota and, human health[J]. Nutrients, 2014, 7(1):17-44. [17] Clark R, Salazar A, Yamada R, et al.Distinct shifts in microbiota composition during drosophila aging impair intestinal function and drive mortality[J]. Cell Reports, 2015, 12(10):1656-1667. [18] Wasilewska E, Zlotkowska D, Wroblewska B.Yogurt starter cultures of Streptococcus thermophilus and Lactobacillus bulgaricus ameliorate symptoms and modulate the immune response in mouse model of dextran sulfate sodium-induced colitis[J]. Journal of Dairy Science, 2019, 102(1):37-53. [19] Thevaranjan N, Puchta A, Schulz C, et al.Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction[J]. Cell Host & Microbe, 2017, 21(4):455-466. [20] 郑晓楠, 张昊, 郭慧媛, 等. 益生菌抗衰老功能的研究进展[J]. 中国乳业, 2012(2):50-53. [21] Bilinski T, Bylak A, Zadragtecza R.The budding yeast Saccharomyces cerevisiae as a model organism:possible implications for gerontological studies[J]. Biogerontology, 2017, 18(4):631-640. [22] Imai S. The NAD World 2. 0:the importance of the inter-tissue communication mediated by NAMPT/NAD+/SIRT1 in mammalian aging and longevity control[J]. NPJ Systems Biology and Applications, 2016, 2:UNSP 16018. [23] Renata ZT, Magdalena KM, Malgorzata A, et al.Cell size influences the reproductive potential and total lifespan of the & IT Saccharomyces cerevisiae & iT yeast as revealed by the analysis of polyploid strains[J]. Oxidative Medicine and Cellular Longevity, 2018. doi:10. 1155/2018/1898421. [24] Leung MCK, Williams PL, Benedetto A, et al.Caenorhabditis elegans:An emerging model in biomedical and environmental toxicology[J]. Toxicological Sciences, 2008, 106(1):5-28. [25] Chalfie M, Tu Y, Euskirchen G, et al.Green fluorescent protein as a marker for gene expression[J]. Science, 1994, 263(5148):802-805. [26] 翟畅, 叶波平. 秀丽隐杆线虫与药物筛选[J]. 药物生物技术, 2017(5):91-94. [27] Lee HY, Lee SH, Min KJ. Insects as a model system for aging studies[J]. Entomological Research, 2015, 45(1):doi:10. 1111/1748-5967. 12088. [28] Cheng X, Zhou W, Zhang Y.The behavioral, pathological and therapeutic features of the senescence-accelerated mouse prone 8 strain as an Alzheimer’s disease animal model[J]. Ageing Research Reviews, 2014, 13:13-37. [29] Usui Y, Kimura Y, Satoh T, et al.Effects of long-term intake of a yogurt fermented with Lactobacillus delbrueckii subsp bulgaricus 2038 and Streptococcus thermophilus 1131 on mice[J]. International Immunology, 2018, 30(7):319-331. [30] Kolosova NG, Vitovtov AO, Muraleva NA, et al.Rapamycin suppresses brain aging in senescence-accelerated OXYS rats[J]. Aging, 2013, 5(6):474-484. [31] Cohen AA.Aging across the tree of life:the importance of a comparative perspective for the use of animal models in aging[J]. Biochimica et Biophysica Acta(BBA)-Molecular Basis of Disease, 2017, 1864(9):2680-2689. [32] Levy M, Thaiss CA, Elinav E.Metabolites:messengers between the microbiota and the immune system[J]. Genes & Development, 2016, 30(14):1589-1597. [33] Smith PM, Howitt MR, Panikov N, et al.The microbial metabolites, short-chain fatty acids, regulate colonic T-reg cell homeostasis[J]. Science, 2013, 341(6145):569-573. [34] Kim CH, Jeongho P, Myunghoo K.Gut microbiota-derived short-chain fatty acids, T Cells, and inflammation[J]. Immune Network, 2014, 14(6):277-288. [35] Sakai T, Kurokawa R, Hirano S, et al.Hydrogen indirectly suppresses increases in hydrogen peroxide in cytoplasmic hydroxyl radical-induced cells and suppresses cellular senescence[J]. Int J Mol Sci, 2019, 20(2):456. [36] Hor YY, Lew LC, Jaafar MH, et al.Lactobacillus sp. improved microbiota and metabolite profiles of aging rats[J]. Pharmacological Research, 2019, 146:104312. [37] Jang HM, Han SK, Kim JK, et al.Lactobacillus sakei alleviates high-fat-diet-induced obesity and anxiety in mice by inducing AMPK activation and SIRT1 expression and inhibiting gut microbiota-mediated NF-kappa B activation[J]. Molecular Nutrition & Food Research, 2019, 63(6):1800978. [38] Kim WG, Kim HI, Kwon EK, et al.Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 mitigate alcoholic steatosis in mice by inhibiting LPS-mediated NF-κB activation through restoration of the disturbed gut microbiota[J]. Food & Function, 2018, 9(8):4255-4265. [39] Kim B, Kwon J, Kim MS, et al.Protective effects of Bacillus probiotics against high-fat diet-induced metabolic disorders in mice[J]. PLoS One, 2018, 13(12):e0210120. [40] Jeong JJ, Woo JY, Ahn YT, et al.The probiotic mixture IRT5 ameliorates age-dependent colitis in rats[J]. International Immunopharmacology, 2015, 26(2):416-422. [41] Gyu JS, Hisako K, Yoshiyasu U, et al.Probiotic bifidobacterium breve induces IL-10-producing Tr1 cells in the colon[J]. PLoS Pathogens, 2012, 8(5):e1002714. [42] Ulgherait M, Rana A, Rera M, et al.AMPK modulates tissue and organismal aging in a non-cell-autonomous manner[J]. Cell Reports, 2014, 8(6):1767-1780. [43] Jang HJ, Yang KE, Oh WK, et al.Nectandrin B-mediated activation of the AMPK pathway prevents cellular senescence in human diploid fibroblasts by reducing intracellular ROS levels[J]. Aging-US, 2019, 11(11):3731-3749. [44] Wang ZW, Chen ZL, Jiang ZY, et al. Cordycepin prevents radiation ulcer by inhibiting cell senescence via NRF2 and AMPK in rodents[J]. Nature Communications, 2019, 10:UNSP 2538. [45] Hor YY, Ooi CH, Khoo BY, et al.Lactobacillus strains alleviated aging symptoms and aging-induced metabolic disorders in aged rats[J]. Journal of Medicinal Food, 2019, 22(1):1-13. [46] Kobilo T, Guerrieri D, Zhang Y, et al.AMPK agonist AICAR improves cognition and motor coordination in young and aged mice[J]. Learning & Memory, 2014, 21(2):119-126. [47] 张晶, 王炳元, 施军平. 细胞衰老在非酒精性脂肪性肝病发生发展中的作用[J]. 临床肝胆病杂志, 2016, 32(3):442-445. [48] Hitoshi E, Maki N, Noriko K, et al.Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats:New insight into the probiotics for the gut-liver axis[J]. PLoS One, 2013, 8(5):e63388. [49] 聂炼, 张爱忠, 姜宁, 等. 益生菌对Toll样受体-核转录因子-κB信号通路调控作用的研究进展[J]. 动物营养学报, 2018, 30(11):4342-4348. [50] Sultuybek GK, Soydas T, Yenmis G.NF-kappa B as the mediator of metformin’s effect on ageing and ageing-related diseases[J]. Clinical and Experimental Pharmacology and Physiology, 2019, 46(5):413-422. [51] Rendra E, Riabov V, Mossel DM, et al.Reactive oxygen species(ROS)in macrophage activation and function in diabetes[J]. Immunobiology, 2019, 224(2):242-253. [52] Wu Z, Miyamoto S.Many faces of NF-κB signaling induced by genotoxic stress[J]. Journal of Molecular Medicine, 2007, 85(11):1187-1202. [53] Adler AS, Sinha S, Kawahara TLA, et al.Motif module map reveals enforcement of aging by continual NF-kB activity[J]. Genes & Development, 2007, 21(24):3244-3257. [54] Dong QG, Sclabas GM, Fujioka S, et al.The function of multiple IkappaB:NF-kappaB complexes in the resistance of cancer cells to Taxol-induced apoptosis[J]. Oncogene, 2002, 21(42):6510-6519. [55] Warnier M, Flaman JM, Chouabe C, et al.The SCN9A channel and plasma membrane depolarization promote cellular senescence through Rb pathway[J]. Aging Cell, 2018, 17(3):e12736. [56] Jeong JJ, Kim KA, Jang SE, et al.Orally administrated Lactobacillus pentosus var. plantarum C29 ameliorates age-dependent colitis by inhibiting the uuclear factor-kappa B signaling pathway via the regulation of lipopolysaccharide production by gut microbiota[J]. PLoS One, 2015, 10(11):e0142521. [57] Kanmani P, Kim H.Functional capabilities of probiotic strains on attenuation of intestinal epithelial cell inflammatory response induced by TLR4 stimuli[J]. BioFactors, 2019, 45(2):223-235. [58] Jin X, Zhang M, Yang YF, et al.Saccharomyces cerevisiae β-glucan-induced SBD-1 expression in ovine ruminal epithelial cells is mediated through the TLR-2-MyD88-NF-κB/MAPK pathway[J]. Veterinary Research Communications, 2019, 43(2):77-89. [59] Zhang LY, Li N, Caicedo R, et al.Alive and dead Lactobacillus rhamnosus GG decrease tumor necrosis factor-alpha-induced interleukin-8 production in Caco-2 cells[J]. Journal of Nutrition, 2005, 135(7):1752-1756. [60] Lee HS, Han SY, Bae EA, et al.Lactic acid bacteria inhibit proinflammatory cytokine expression and bacterial glycosaminoglycan degradation activity in dextran sulfate sodium-induced colitic mice[J]. International Immunopharmacology, 2008, 8(4):574-580. [61] Jang SE, Hyam SR, Han MJ, et al.Lactobacillus brevis G-101 ameliorates colitis in mice by inhibiting NF-κB, MAPK and AKT pathways and by polarizing M1 macrophages to M2-like macrophages[J]. Journal of Applied Microbiology, 2013, 115(3):888-896. [62] Wu SJ, Fang JY, Ng CC, et al.Anti-inflammatory activity of Lactobacillus-fermented adlay-soymilk in LPS-induced macrophages through suppression of NF-kappa B pathways[J]. Food Research International, 2013, 52(1):262-268. [63] Jensen H, Dromtorp SM, Axelsson L, et al.Immunomodulation of monocytes by probiotic and selected lactic acid bacteria[J]. Probiotics and Antimicrobial Proteins, 2015, 7(1):14-23. [64] Douillard FP, Ribbera A, Jarvinen HM, et al.Comparative genomic and functional analysis of Lactobacillus casei and Lactobacillus rhamnosus strains marketed as probiotics[J]. Applied and Environmental Microbiology, 2013, 79(6):1923-1933. |
[1] | ZHONG Ming-yue, LIU Chun-yan, YAN Yan, ZHANG Xiao-hui, YUAN Hai-sheng, XU Guo-quan, ZHANG He-ping, WANG Yu-zhen. Improvement Effect of Bifidobacterium lactis V9 on NAFLD Rats Induced by High-fat Diet [J]. Biotechnology Bulletin, 2022, 38(3): 181-187. |
[2] | MA Tao, DIAO Qi-yu. Recent Advance in the Study of the Regulation of Early Life Gut Microbiota by Probiotics in Livestock [J]. Biotechnology Bulletin, 2020, 36(2): 17-26. |
[3] | DU Ruo-xi, GUO Ming-zhang, XIE Zi-xin, HE Xiao-yun, HUANG Kun-lun, XU Wen-tao. Application and Prospect of Synthetic Biology in Improving Intestinal Health [J]. Biotechnology Bulletin, 2018, 34(1): 49-59. |
[4] | WANG Li-jie, YU Xiao-bin, FANG Yin-bing, GU Qiu-ya. Screening of Probiotics for Inhibiting Pathogens and Preliminary Determination of Antimicrobial Substances [J]. Biotechnology Bulletin, 2017, 33(11): 123-129. |
[5] | ZHAO Jiang, CHEN Chun, WANG Yi-fei, ,WANG Hong, ,HUANG Jie, ,WANG Hao. The Protective Effect of Haworth Fruit Extract on Caenorhabditis elegans in Acute Damages [J]. Biotechnology Bulletin, 2016, 32(4): 256-260. |
[6] | Xin Yueqiang, Liang Rongrong, Wang Ruiming. Effects of Galactooligosaccharide on Exopolysaccharide Produced by Intestinal Probiotics [J]. Biotechnology Bulletin, 2015, 31(6): 144-150. |
[7] | Sun Hongmei, Wang Tengfei, Li Piwu, Tang Weihua, Qu Lina, Wang Ruiming . Tolerance of Three Potentially Piglets Feed Probiotic and Antagonistic Pathogens Research [J]. Biotechnology Bulletin, 2013, 0(8): 155-159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||