Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (2): 17-26.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0842
Previous Articles Next Articles
MA Tao, DIAO Qi-yu
Received:
2019-09-12
Online:
2020-02-26
Published:
2020-02-23
MA Tao, DIAO Qi-yu. Recent Advance in the Study of the Regulation of Early Life Gut Microbiota by Probiotics in Livestock[J]. Biotechnology Bulletin, 2020, 36(2): 17-26.
[1] Northoff E.2050 A third more mouths to feed[N]. Food and Agriculture Organization of the United Nations, 2016. [2] McLeod A. World livestock 2011-livestock in food security[N]. Food and Agriculture Organization of the United Nations, 2011. [3] Marshall BM, Levy SB.Food animals and antimicrobials:impacts on human health[J]. Clinical Microbiology Reviews, 2011, 24:718-733. [4] Van Boeckel TP, Brower C, Gilbert M, et al.Global trends in antimicrobial use in food animals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112:5649-5654. [5] Hao H, Cheng G, Iqbal Z, et al.Benefits and risks of antimicrobial use in food-producing animals[J]. Frontiers in Microbiolology, 2014, 5:288. [6] Lekshmi M, Ammini P, Kumar S, et al.The food production environment and the development of antimicrobial resistance in human pathogens of animal origin[J]. Microorganisms, 2017, 5:11. [7] Hill C, Guarner F, Reid G, et al.Expert consensus document:The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic[J]. Nature Reviews Gastroenterology & Hepatology, 2014, 11:506-514. [8] Timmerman HM, Mulder L, Everts H, et al.Health and growth of veal calves fed milk replacers with or without probiotics[J]. Journal of Dairy Science, 2005, 88:2154-2165. [9] Böhmer BM, Kramer W, Roth-Maier DA.Dietary probiotic supplementation and resulting effects on performance, health status, and microbial characteristics of primiparous sows[J]. Journal of Animal Physiology and Animal Nutrtion, 2006, 90:309-315. [10] Mappley LJ, Tchórzewska MA, Nunez A, et al.Oral treatment of chickens with Lactobacillus reuteri LM1 reduces Brachyspira pilosicoli-induced pathology[J]. Journal of Medical Microbiology, 2013, 62:287-296. [11] Muñoz-Atienza E, Gómez-Sala B, Araújo C, et al.Antimicrobial activity, antibiotic susceptibility and virulence factors of lactic acid bacteria of aquatic origin intended for use as probiotics in aquaculture[J]. BMC Microbiology, 2013, 13:15. [12] Varankovich NV, Nickerson MT, Korber DR.Probiotic-based strategies for therapeutic and prophylactic use against multiple gastrointestinal diseases[J]. Frontiers in Microbiology, 2015, 6:685. [13] Taneja V.Microbiome:Impact of gender on function & characteristics of gut microbiome[M]// Principles of Gender-Specific Medicine. Academic Press, 2017:569-583. [14] Abecia L, Martín-García AI, Martínez G, et al.Nutritional intervention in early life to manipulate rumen microbial colonization and methane output by kid goats postweaning[J]. Journal of Animal Science, 2013, 91:4832-4840. [15] Shen X, Liu L, Peek RM, et al.Supplementation of p40, a Lactobacillus rhamnosus GG-derived protein, in early life promotes epidermal growth factor receptor-dependent intestinal development and long-term health outcomes[J]. Mucosal Immunology, 2018, 11:1316-1328. [16] Angelakis E.Weight gain by gut microbiota manipulation in productive animals[J]. Microbial Pathogenesis, 2017, 106:162-170. [17] Hojo K, Nagaoka S, Murata S, et al.Reduction of vitamin K concentration by salivary Bifidobacterium strains and their possible nutritional competition with Porphyromonas gingivalis[J]. Journal of Applied Microbiology, 2007, 103:1969-1974. [18] Ocaña VS, Pesce de Ruiz Holgado AA, Nader-Macías ME. Selection of vaginal H2O2-generating Lactobacillus species for probiotic use[J]. Current Microbiology, 1999, 38:279-284. [19] Bermudez-Brito M, Muñoz-Quezada S, Gomez-Llorente C, et al.Human intestinal dendritic cells decrease cytokine release against Salmonella infection in the presence of Lactobacillus paracasei upon TLR activation[J]. PLoS One, 2012, 7:e43197. [20] Schlee M, Harder J, Köten B, et al.Probiotic lactobacilli and VSL#3 induce enterocyte β-defensin 2[J]. Clinical and Experimental Immunology, 2008, 151:528-535. [21] Schlee M, Wehkamp J, Altenhoefer A, et al.Induction of human β-defensin 2 by the probiotic Escherichia coli Nissle 1917 is mediated through flagellin[J]. Infection and Immunity, 2007, 75:2399-2407. [22] Seth A, Yan F, Polk DB, et al.Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC-and MAP kinase-dependent mechanism[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2008, 294:G1060-G1069. [23] Yan F, Cao H, Cover TL, et al.Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth[J]. Gastroenterology, 2007, 132:562-575. [24] Kankainen M, Paulin L, Tynkkynen S, et al.Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106:17193-17198. [25] Mack DR, Michail S, Wei S, et al.Probiotics inhibit enteropatho-genic E. coli adherence in vitro by inducing intestinal mucin gene expression[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology, 1999, 276:G941-G950. [26] Brittan JL, Nobbs AH.Group B Streptococcus pili mediate adherence to salivary glycoproteins[J]. Microbes and Infection, 2015, 17:360-368. [27] Turroni F, Serafini F, Mangifesta M, et al.Expression of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in response to environmental gut conditions[J]. FEMS Microbiology Letters, 2014, 357:23-33. [28] Lebeer S, Vanderleyden J, De Keersmaecker SCJ.Host interactions of probiotic bacterial surface molecules:comparison with commensals and pathogens[J]. Nature Reviews Microbiology, 2010, 8:171-184. [29] Bene KP, Kavanaugh DW, Leclaire C, et al.Lactobacillus reuteri surface mucus adhesins upregulate inflammatory responses through interactions with innate C-type lectin receptors[J]. Frontiers in Microbiology, 2017, 8:321. [30] Famularo G, Moretti S, Marcellini S, et al.Stimulation of immunity by probiotics[M]// Probiotics 2. Dordrecht:Springer, 1997:133-161. [31] Tsai YT, Cheng PC, Pan TM.The immunomodulatory effects of lactic acid bacteria for improving immune functions and benefits[J]. Applied Microbiology and Biotechnology, 2012, 96:853-862. [32] Round JL, Mazmanian SK.Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107:12204-12209. [33] Atarashi K, Tanoue T, Oshima K, et al.Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota[J]. Nature, 2013, 500:232-236. [34] Atarashi K, Tanoue T, Shima T, et al.Induction of colonic regula-tory T cells by indigenous Clostridium species[J]. Science, 2011, 331:337-341. [35] O’Mahony C, Scully P, O’Mahony D, et al. Commensal-induced regulatory T cells mediate protection against pathogen-stimulated NF-κB activation[J]. PLoS Pathogens, 2008, 4:e1000112. [36] ]Konieczna P, Groeger D, Ziegler M, et al. Bifidobacterium infantis 35624 administration induces Foxp3 T regulatory cells in human peripheral blood:potential role for myeloid and plasmacytoid dendritic cells[J]. Gut, 2012, 61:354-366. [37] Liu H, Hou C, Wang G, et al.Lactobacillus reuteri I5007 modulates intestinal host defense peptide expression in the model of IPEC-J2 cells and neonatal piglets[J]. Nutrients, 2017, 9:559. [38] Yang Y, Zhao X, Minh HAL, et al.Reutericyclin producing Lactobacillus reuteri modulates development of fecal microbiota in weanling pigs[J]. Frontiers in Microbiology, 2015, 6:762. [39] Wang T, Teng K, Liu Y, et al.Lactobacillus plantarum PFM 105 promotes intestinal development through modulation of gut microbiota in weaning piglets[J]. Frontiers in Microbiology, 2019, 10:90. [40] Pajarillo EAB, Chae JP, Balolong MP, et al.Effects of probiotic Enterococcus faecium NCIMB 11181 administration on swine fecal microbiota diversity and composition using barcoded pyrosequencing[J]. Animal Feed Science and Technology, 2015, 201:80-88. [41] Chae JP, Pajarillo EAB, Oh JK, et al.Revealing the combined effects of lactulose and probiotic enterococci on the swine fecal microbiota using 454 pyrosequencing[J]. Microbial Biotechnology, 2016, 9:486-495. [42] Wang YB, Du W, Fu AK, et al.Intestinal microbiota and oral administration of Enterococcus faecium associated with the growth performance of new-born piglets[J]. Beneficial Microbes, 2016, 7:529-538. [43] Li P, Niu Q, Wei Q, et al.Microbial shifts in the porcine distal gut in response to diets supplemented with Enterococcus faecalis as alternatives to antibiotics[J]. Scientific Reports, 2017, 7:41395. [44] Zhang W, Zhu YH, Zhou D, et al. Oral administration of a select mixture of Bacillus probiotics affects the gut microbiota and goblet cell function following Escherichia coli challenge in newly weaned pigs of genotype MUC4 that are supposed to be enterotoxigenic E. coli F4ab/ac receptor negative[J]. Applied and Environmental Microbiology, 2017, 83(3). pii:e02747-16. [45] He Y, Mao C, Wen H, et al.Influence of ad libitum feeding of piglets with bacillus subtilis fermented liquid feed on gut flora, luminal contents and health[J]. Scientific Reports, 2017, 7:44553. [46] Cousin FJ, Foligne B, Deutsch SM, et al.Assessment of the probi-otic potential of a dairy product fermented by Propionibacterium freudenreichii in piglets[J]. Journal of Agricultural and Food Chemistry, 2012, 60:7917-7927. [47] Ley RE.Gut microbiota in 2015:Prevotella in the gut:choose carefully[J]. Nature Reviews Gastroenterology & Hepatology, 2016, 13:69-70. [48] Benno Y, Mitsuoka T.Impact of Bifidobacterium longum on human fecal microflora[J]. Microbiology and Immunology, 1992, 36:683-694. [49] Umu ÖCO, Fauske AK, Åkesson CP, et al.Gut microbiota profiling in Norwegian weaner pigs reveals potentially beneficial effects of a high-fiber rapeseed diet[J]. PLoS One, 2018, 13:e0209439. [50] Lan GQ, Ho YW, Abdullah N.Mitsuokella jalaludinii sp. nov. , from the rumens of cattle in Malaysia[J]. International Journal of Systematic and Evolutionary Microbiology, 2002, 52:713-718. [51] Chanter N, Hall GA, Bland AP, et al.Dysentery in calves caused by an atypical strain of Escherichia coli(S102-9)[J]. Veterinary Microbiology, 1986, 12:241-253. [52] Gally DL, Stevens MP.Microbe profile:Escherichia coli O157:H7-notorious relative of the microbiologist’s workhorse[J]. Microbiology, 2017, 163(1):1-3. [53] Strauss J, Kaplan GG, Beck PL, et al.Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host[J]. Inflammatory Bowel Diseases, 2011, 17:1971-1978. [54] Gevers D, Kugathasan S, Denson LA, et al.The treatment-naive microbiome in new-onset Crohn’s disease[J]. Cell Host & Microbe, 2014, 15:382-392. [55] Nakphaichit M, Thanomwongwattana S, Phraephaisarn C, et al.The effect of including Lactobacillus reuteri KUB-AC5 during post-hatch feeding on the growth and ileum microbiota of broiler chickens[J]. Poultry Science, 2011, 90:2753-2765. [56] De Cesare A, Sirri F, Manfreda G, et al.Effect of dietary supplementation with Lactobacillus acidophilus D2/CSL(CECT 4529)on caecum microbioma and productive performance in broiler chickens[J]. PLoS One, 2017, 12(5):e0176309. [57] Saint-Cyr MJ, Haddad N, Taminiau B, et al.Use of the potential probiotic strain Lactobacillus salivarius SMXD51 to control Campylobacter jejuni in broilers[J]. International Journal of Food Microbiology, 2017, 247:9-17. [58] Gao P, Ma C, Sun Z, et al.Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken[J]. Microbiome, 2017, 5:91. [59] Zhang L, Li J, Yun TT, et al.Effects of pre-encapsulated and pro-encapsulated Enterococcus faecalis on growth performance, blood characteristics, and cal microflora in broiler chickens[J]. Poultry Science, 2015, 94:2821-2830. [60] Beirão BCB, Ingberman M, Fávaro Jr C, et al.Effect of an Enterococcus faecium probiotic on specific IgA following live Salmonella enteritidis vaccination of layer chickens[J]. Avian Pathology, 2018, 47:325-333. [61] Oh JK, Pajarillo EAB, Chae JP, et al.Effects of Bacillus subtilis CSL2 on the composition and functional diversity of the faecal microbiota of broiler chickens challenged with Salmonella gallinarum[J]. Journal of Animal Science and Biotechnology, 2017, 8:1. [62] Bortoluzzi C, Serpa Vieira B, de Paula Dorigam JC, et al. Bacillus subtilis DSM 32315 supplementation attenuates the effects of Clostridium perfringens challenge on the growth performance and intestinal microbiota of broiler chickens[J]. Microorganisms, 2019, 7:71. [63] Jacquier V, Nelson A, Jlali M, et al.Bacillus subtilis 29784 induces a shift in broiler gut microbiome toward butyrate-producing bacteria and improves intestinal histomorphology and animal performance[J]. Poultry Science, 2019, 98:2548-2554. [64] Wang Y, Sun J, Zhong H, et al.Effect of probiotics on the meat flavour and gut microbiota of chicken[J]. Scientific Reports, 2017, 7:6400. [65] Baldwin S, Hughes RJ, Van TTH, et al.At-hatch administration of probiotic to chickens can introduce beneficial changes in gut microbiota[J]. PLoS One, 2018, 13:e0194825. [66] Willis WL, Reid L.Investigating the effects of dietary probiotic feeding regimens on broiler chicken production and Campylobacter jejuni presence[J]. Poultry Science, 2008, 87:606-611. [67] Kilonzo-Nthenge A, Nahashon SN, Chen F, et al.Prevalence and antimicrobial resistance of pathogenic bacteria in chicken and guinea fowl[J]. Poultry Science, 2008, 87:1841-1848. [68] Bull SA, Allen VM, Dominque G, et al.Sources of Campylobacter spp. colonizing housed broiler flocks during rearing[J]. Applied and Environmental Microbiology, 2006, 72:645-652. [69] Koenen ME, Kramer J, Van Der Hulst R, et al. Immunomodulation by probiotic lactobacilli in layer-and meat-type chickens[J]. British Poultry Science, 2004, 45:355-366. [70] Zhang Q, Eicher SD, Applegate TJ.Development of intestinal mucin 2, IgA, and polymeric Ig receptor expressions in broiler chickens and Pekin ducks[J]. Poultry Science, 2015, 94:172-180. [71] Yang CM, Cao GT, Ferket PR, et al.Effects of probiotic, Clostridium butyricum, on growth performance, immune function, and cecal microflora in broiler chickens[J]. Poultry Science, 2012, 91:2121-2129. [72] Peng Q, Zeng XF, Zhu JL, et al.Effects of dietary Lactobacillus plantarum B1 on growth performance, intestinal microbiota, and short chain fatty acid profiles in broiler chickens[J]. Poultry Science, 2016, 95:893-900. [73] Martínez EA, Babot JD, Lorenzo-Pisarello MJ, et al.Feed supplementation with avian Propionibacterium acidipropionici contributes to mucosa development in early stages of rearing broiler chickens[J]. Beneficial Microbes, 2016, 7:687-698. [74] Forte C, Manuali E, Abbate Y, et al.Dietary Lactobacillus acidophilus positively influences growth performance, gut morphology, and gut microbiology in rurally reared chickens[J]. Poultry Science, 2018, 97:930-936. [75] Baldwin RLVI, McLeod KR, Klotz JL, et al. Rumen development, intestinal growth and hepatic metabolism in the pre- and postweaning ruminant[J]. Journal of Dairy Science, 2004, 87:55-65. [76] Jami E, Israel A, Kotser A, et al.Exploring the bovine rumen bacterial community from birth to adulthood[J]. The ISME Journal, 2013, 7:1069-1079. [77] Ishaq SL, Kim CJ, Reis D, et al.Fibrolytic bacteria isolated from the rumen of North American moose(Alces alces)and their use as a probiotic in neonatal lambs[J]. PLoS One, 2015, 10:e0144804. [78] Fomenky BE, Do DN, Talbot G, et al.Direct-fed microbial supplementation influences the bacteria community composition of the gastrointestinal tract of pre-and post-weaned calves[J]. Scientific Reports, 2018, 8:14147. [79] Luo Y, Huang C, Ye J, et al.Genome sequence and analysis of Peptoclostridium difficile strain ZJCDC-S82[J]. Evolutionary Bioinformatics, 2016, 12:41-49. [80] Duncan SH, Hold GL, Barcenilla A, et al.Roseburia intestinalis sp. nov. , a novel saccharolytic, butyrate-producing bacterium from human faeces[J]. International Journal of Systematic and Evolutionary Microbiology, 2002, 52:1615-1620. [81] Tamanai-Shacoori Z, Smida I, Bousarghin L, et al.Roseburia spp. :a marker of health?[J]. Future Microbiology, 2017, 12:157-170. [82] Kraatz M, Wallace RJ, Svensson L.Olsenella umbonata sp. nov. , a microaerotolerant anaerobic lactic acid bacterium from the sheep rumen and pig jejunum, and emended descriptions of Olsenella, Olsenella uli and Olsenella profuse[J]. International Journal of Systematic and Evolutionary Microbiology, 2011, 61:795-803. [83] Dewhirst FE, Paster BJ, Tzellas N, et al.Characterization of novel human oral isolates and cloned 16S rDNA sequences that fall in the family Coriobacteriaceae:description of olsenella gen. nov. , reclassification of Lactobacillus uli as Olsenella uli comb. nov. and description of Olsenella profusa sp. nov[J]. International Journal of Systematic and Evolutionary Microbiology, 2001, 51:1797-1804. [84] Villot C, Ma T, Renaud DL, et al.Saccharomyces cerevisiae boulardii CNCM I-1079 affects health, growth, and fecal microbiota in milk-fed veal calves[J]. Journal of Dairy Science, 2019, 102:7011-7025. [85] Inkpen SA, Douglas GM, Brunet TDP, et al.The coupling of taxonomy and function in microbiomes[J]. Biology & Philosophy 2017, 32:1225-1243. [86] Franzosa EA, Morgan XC, Segata N, et al.Relating the metatranscriptome and metagenome of the human gut[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111:E2329-E2338. [87] Louca S, Parfrey LW, Doebeli M.Decoupling function and taxonomy in the global ocean microbiome[J]. Science, 2016, 353:1272-1277. [88] Sohail MU, Ijaz A, Younus M, et al.Effect of supplementation of mannan oligosaccharide and probiotic on growth performance, relative weights of viscera, and population of selected intestinal bacteria in cyclic heat-stressed broilers[J]. Journal of Applied Poultry Research, 2013, 22:485-491. [89] Zhu YH, Li XQ, Zhang W, et al.Dose-dependent effects of Lactobacillus rhamnosus on serum interleukin-17 production and intestinal T-cell responses in pigs challenged with Escherichia coli[J]. Applied and Environmental Microbiology, 2014, 80:1787-1798. [90] Zhang R, Zhou M, Tu Y, et al.Effect of oral administration of probiotics on growth performance, apparent nutrient digestibility and stress-related indicators in Holstein calves[J]. Journal of Animal Physiology and Animal Nutrition, 2016, 100:33-38. [91] Hungate RE.The rumen and its microbes[M]. New York:Academic Press, 1966. [92] Weimer PJ.Redundancy, resilience, and host specificity of the ruminal microbiota:implications for engineering improved ruminal fermentations[J]. Frontiers in Microbiology, 2015, 6:296. [93] Benson AK, Kelly SA, Legge R, et al.Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107:18933-18938. [94] Zhou M, Peng YJ, Chen Y, et al.Assessment of microbiome changes after rumen transfaunation:implications on improving feed efficiency in beef cattle[J]. Microbiome, 2018, 6:62. [95] Li F, Hitch TCA, Chen Y, et al.Comparative metagenomic and metatranscriptomic analyses reveal the breed effect on the rumen microbiome and its associations with feed efficiency in beef cattle[J]. Microbiome, 2019, 7:6. [96] Li F, Li C, Chen Y, et al.Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in cattle[J]. Microbiome, 2019, 7:92. [97] Wen C, Yan W, Sun C, et al.The gut microbiota is largely independent of host genetics in regulating fat deposition in chickens[J]. The ISME Journal, 2019, 13:1422-1436. |
[1] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[2] | WANG Tian-yi, WANG Rong-huan, WANG Xia-qing, ZHANG Ru-yang, XU Rui-bin, JIAO Yan-yan, SUN Xuan, WANG Ji-dong, SONG Wei, ZHAO Jiu-ran. Research in Maize Dwarf Genes and Dwarf Breeding [J]. Biotechnology Bulletin, 2023, 39(8): 43-51. |
[3] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[4] | LI Yu-ling, MAO Xin, ZHANG Yuan-shuai, DONG Yuan-fu, LIU Cui-lan, DUAN Chun-hua, MAO Xiu-hong. Applications and Perspectives of Radiation Mutagenesis in Woody Plant Breeding [J]. Biotechnology Bulletin, 2023, 39(6): 12-30. |
[5] | LI Dian-dian, SU Yuan, LI Jie, XU Wen-tao, ZHU Long-jiao. Progress in Selection and Application of Antibacterial Aptamers [J]. Biotechnology Bulletin, 2023, 39(6): 126-132. |
[6] | ZHANG He-chen, YUAN Xin, GAO Jie, WANG Xiao-chen, WANG Hui-juan, LI Yan-min, WANG Li-min, FU Zhen-zhu, LI Bao-yin. Mechanism of Flower Petal Coloration and Molecular Breeding [J]. Biotechnology Bulletin, 2023, 39(5): 23-31. |
[7] | YI Xi, LIAO Hong-dong, ZHENG Jing-yuan. Research Progress in Plant Endophytic Fungi for Root-knot Nematode Control [J]. Biotechnology Bulletin, 2023, 39(3): 43-51. |
[8] | WANG Wei-chen, ZHAO Jin, HUANG Wei-yi, GUO Xin-zhu, LI Wan-ying, ZHANG Zhuo. Research Progress in Metabolites Produced by Bacillus Against Three Common Plant Pathogenic Fungi [J]. Biotechnology Bulletin, 2023, 39(3): 59-68. |
[9] | LI Kai-hang, WANG Hao-chen, CHENG Ke-xin, YANG Yan, JIN Yi, HE Xiao-qing. Genetic Mechanisms of Plant-microbiome Interaction by Genome-wide Association Analysis Study [J]. Biotechnology Bulletin, 2023, 39(2): 24-34. |
[10] | LUO Ning, JIAO Yang, MAO Zhen-chuan, LI Hui-xia, XIE Bing-yan. Advances of Trichoderma in Controlling Root Knot Nematodes and Cyst Nematodes [J]. Biotechnology Bulletin, 2023, 39(2): 35-50. |
[11] | CHEN Guang-xia, LI Xiu-jie, JIANG Xi-long, SHAN Lei, ZHANG Zhi-chang, LI Bo. Research Progress in Plant Small Signaling Peptides Involved in Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(11): 61-73. |
[12] | WANG Chen-yu, ZHOU Chu-yuan, HE Di, FAN Zi-hao, WANG Meng-meng, YANG Liu-yan. Role and Mechanism of Polyphosphate in the Microbial Response to Environmental Stresses [J]. Biotechnology Bulletin, 2023, 39(11): 168-181. |
[13] | QI Fang-ting, HUANG He. Research Advance in the Regulation Mechanism of Flower Spots Formation in Ornamental Plant [J]. Biotechnology Bulletin, 2023, 39(10): 17-28. |
[14] | CHEN Quan-bing, CAO Wei-jie, LI Chun, LV Bo. Molecular Evolutionary Relationship and Protein Structure of Glycoside Hydrolases from GH79 Family [J]. Biotechnology Bulletin, 2023, 39(1): 104-114. |
[15] | LIU Jia-xin, ZHANG Hui-long, ZOU Rong-song, YANG Xiu-yan, ZHU Jian-feng, ZHANG Hua-xin. Research Progress in Na+ Antiport and Physiological Growth Mechanisms of Differernt Halophytes Adapted to Salt Stress [J]. Biotechnology Bulletin, 2023, 39(1): 59-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||