[1] 蔡凯凯, 黄占旺, 叶德军, 等. 益生菌调节肠道菌群及免疫调节作用机理[J]. 中国饲料, 2011, 18:34-37.
[2] 黄重发. 益生菌对腹泻型肠易激综合征患者肠道菌群调节作用的研究[J]. 疑难病杂志, 2008, 7(6):362-364.
[3] 韦瑶, 龚剑峰, 朱维铭, 等. 粪便菌群移植治疗溃疡性结肠炎 9 例临床分析[J]. 中国实用外科杂志, 2014, 34(10):970-973.
[4] 李宁. 肠道菌群紊乱与粪菌移植[J]. 肠外与肠内营养, 2014(4):193-197.
[5] Steen EJ, Kang Y, Bokinsky G, et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass[J]. Nature, 2010, 463(7280):559.
[6] Sinha J, Reyes SJ, Gallivan JP. Reprogramming bacteria to seek and destroy an herbicide[J]. Nature Chemical Biology, 2010, 6(6):464-470.
[7] 唐鸿志, 王伟伟, 张莉鸽, 等. 合成生物学在环境修复中的应用[J]. 生物工程学报, 2017, 3:018.
[8] Ro DK, Paradise EM, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440(7086):940-943.
[9] 彭曙光, 谢震. 基于合成基因线路的智能药物[J]. 生物工程学报, 2017, 33(3):456-466.
[10] 王勇. 新本草计划——基于合成生物学的药用植物活性代谢物研究[J]. 生物工程学报, 2017, 33(3):478-485.
[11] 赵田鑫, 钟超. 合成生物学技术在材料科学中的应用[J]. 生物工程学报, 2017, 33(3):494-505.
[12] 孙丽超, 李淑英, 王凤忠, 等. 萜类化合物的合成生物学研究进展[J]. 生物技术通报, 2017, 33(1):64-75.
[13] 匡雪君, 邹丽秋, 孙超, 等. 天然产物合成生物学体系的优化策略[J]. 生物技术通报, 2017, 33(1):48-57.
[14] 申晓林, 袁其朋. 生物合成芳香族氨基酸及其衍生物的研究进展[J]. 生物技术通报, 2017, 33(1):24-34.
[15] 王丽苹, 罗云孜. 合成生物学在天然产物研究中的应用[J]. 生物技术通报, 2017, 33(1):35-47.
[16] 欧阳钦, 梁红亮. 溃疡性结肠炎[J]. 继续医学教育, 2006, 20(3):30-34.
[17] Stenson WF, Tremaine WJ, Cohen RD. Ulcerative Colitis:Clinical Manifestations and Management[J]. Yamada’s Atlas of Gastroenterology, 2016:216-224.
[18] 刘伶俐. 传统抗生素的可能替代物——抗菌肽的研究进展[J]. 江西饲料, 2004(5):1-3.
[19] 孙科, 邹晓庭. 抗菌肽研究进展及在畜牧生产上的应用[J]. 甘肃畜牧兽医, 2008, 38(3):43-46.
[20] Saeidi N, Wong CK, Lo TM, et al. Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen[J]. Molecular Systems Biology, 2011, 7(1):521.
[21] Gupta S, Bram EE, Weiss R. Genetically programmable pathogen sense and destroy[J]. ACS Synthetic Biology, 2013, 2(12):715-723.
[22] Hwang IY, Tan MH, Koh E, et al. Reprogramming microbes to be pathogen-seeking killers[J]. ACS Synthetic Biology, 2013, 3(4):228-237.
[23] Volzing K, Borrero J, Sadowsky MJ, et al. Antimicrobial peptides targeting Gram-negative pathogens, produced and delivered by lactic acid bacteria[J]. ACS Synthetic Biology, 2013, 2(11):643-650.
[24] Jayaraman P, Holowko MB, Yeoh JW, et al. Repurposing a two-component system-based biosensor for the killing of Vibrio cholera[J]. ACS Synthetic Biology, 2017, 6(7):1403-1415.
[25] Florjanczyk UA. Design of engineered bacteria for regulated phage release:Progress towards targeted elimination of pathogens[D]. Canada:University of Toronto, 2014.
[26] Sánchez B, López P, González-Rodríguez I, et al. A flagellin-producing Lactococcus strain:interactions with mucin and enteropathogens[J]. FEMS Microbiology Letters, 2011, 318(2):101-107.
[27] Koo OK, Amalaradjou MAR, Bhunia AK. Recombinant probiotic expressing Listeria adhesion protein attenuates Listeria monocytogenes virulence in vitro[J]. PLoS One, 2012, 7(1):e29277.
[28] Paton AW, Jennings MP, Morona R, et al. Recombinant probiotics for treatment and prevention of enterotoxigenic Escherichia coli diarrhea[J]. Gastroenterology, 2005, 128(5):1219-1228.
[29] Focareta A, Paton JC, Morona R, et al. A recombinant probiotic for treatment and prevention of cholera[J]. Gastroenterology, 2006, 130(6):1688-1695.
[30] Duan F, March JC. Engineered bacterial communication prevents Vibrio cholerae virulence in an infant mouse model[J]. Proc Natl Acad Sci, 2010, 107(25):11260-11264.
[31] 庞庆霄, 梁泉峰, 祁庆生. 合成生物学开关在代谢工程中的应用[J]. 生物技术通报, 2017, 33(1):58-63.
[32] You L, Cox III RS, Weiss R, et al. Programmed population control by cell-cell communication and regulated killing[J]. Nature, 2004, 428(6985):868.
[33] Wang Z, Wu X, Peng J, et al. Artificially constructed quorum-sensing circuits are used for subtle control of bacterial population density[J]. PLoS One, 2014, 9(8):e104578.
[34] Hu B, Du J, Zou R, et al. An environment-sensitive synthetic microbial ecosystem[J]. PLoS One, 2010, 5(5):e10619.
[35] Balagaddé FK, Song H, Ozaki J, et al. A synthetic Escherichia coli predator-prey ecosystem[J]. Molecular Systems Biology, 2008, 4(1):187.
[36] Claesen J, Fischbach MA. Synthetic microbes as drug delivery systems[J]. ACS Synthetic Biology, 2014, 4(4):358-364.
[37] 朱伟云, 余凯凡, 慕春龙, 等. 猪的肠道微生物与宿主营养代谢[J]. 动物营养学报, 2014, 26(10):3046-3051.
[38] 黄小燕, 王根虎. 肠道微生物调控脂质代谢的分子机制[J]. 饲料工业, 2012(18):59-62.
[39] 张日俊. 消化道微生物与宿主营养素的吸收和代谢研究[J]. 中国饲料, 2003(2):11-14.
[40] Chen Z, Guo L, Zhang Y, et al. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity[J]. The Journal of clinical investigation, 2014, 124(8):3391.
[41] Somabhai CA, Raghuvanshi R, Nareshkumar G. Genetically engineered Escherichia coli Nissle 1917 synbiotics reduce metabolic effects induced by chronic consumption of dietaryfructose[J]. PLoS One, 2016, 11(10):e0164860.
[42] Duan FF, Liu JH, March JC. Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes[J]. Diabetes, 2015, 64(5):1794-1803.
[43] 黄争, 范一宏, 吕宾, 等. 超声在肠道疾病诊断中的应用价值[J]. 世界华人消化杂志, 2010, 18(23):2401-2404.
[44] Archer EJ, Robinson AB, Su?el GM. Engineered E. coli that detect and respond to gut inflammation through nitric oxide sensing[J]. ACS Synthetic Biology, 2012, 1(10):451-457.
[45] Riglar DT, Baym M, Kerns SJ, et al. Long-term monitoring of inflammation in the mammalian gut using programmable commensal bacteria[J]. BioRxiv, 2016:075051.
[46] Daeffler KNM, Galley JD, Sheth RU, et al. Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation[J]. Molecular Systems Biology, 2017, 13(4):923.
[47] Riglar DT, Giessen TW, Baym M, et al. Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation[J]. Nat Biotechnol, 2017, 35:653-658.
[48] Kotula JW, Kerns SJ, Shaket LA, et al. Programmable bacteria detect and record an environmental signal in the mammalian gut[J]. Proc Natl Acad Sci, 2014, 111(13):4838-4843.
[49] Robert S, Gysemans C, Takiishi T, et al. Oral delivery of glutamic acid decarboxylase(GAD)-65 and IL10 by Lactococcus lactis reverses diabetes in recent-onset NOD mice[J]. Diabetes, 2014, 63(8):2876-2887.
[50] del Carmen S, Rosique RM, Saraiva T, et al. Protective effects of lactococci strains delivering either IL-10 protein or cDNA in a TNBS-induced chronic colitis model[J]. Journal of Clinical Gastroenterology, 2014, 48:S12-S17.
[51] Anderson JC, Clarke EJ, Arkin AP, et al. Environmentally controlled invasion of cancer cells by engineered bacteria[J]. Journal of Molecular Biology, 2006, 355(4):619-627.
[52] Chen J, Yang B, Cheng X, et al. Salmonella-mediated tumor-targeting TRAIL gene therapy significantly suppresses melanoma growth in mouse model[J]. Cancer Science, 2012, 103(2):325-333.
[53] Pin?ero-Lambea C, Bodelo?n G, Ferna?ndez-Peria?n?ez R, et al. Programming controlled adhesion of E. coli to target surfaces, cells, and tumors with synthetic adhesins[J]. ACS Synthetic Biology, 2014, 4(4):463-473.
[54] Xie Z, Wroblewska L, Prochazka L, et al. Multi-input RNAi-based logic circuit for identification of specific cancer cells[J]. Science, 2011, 333(6047):1307-1311.
[55] Mimee M, Citorik RJ, Lu TK. Microbiome therapeutics—Advances and challenges[J]. Advanced Drug Delivery Reviews, 2016, 105:44-54.
[56] Lagenaur LA, Sanders-Beer BE, Brichacek B, et al. Prevention of vaginal SHIV transmission in macaques by a live recombinant Lactobacillus[J]. Mucosal Immunology, 2011, 4(6):648.
[57] Motta JP, Bermúdez-Humarán LG, Deraison C, et al. Food-grade bacteria expressing elafin protect against inflammation and restore colon homeostasis[J]. Science Translational Medicine, 2012, 4(158):158ra144.
[58] Limaye SA, Haddad RI, Cilli F, et al. Phase 1b, multicenter, single blinded, placebo-controlled, sequential dose escalation study to assess the safety and tolerability of topically applied AG013 in subjects with locally advanced head and neck cancer receiving induction chemotherapy[J]. Cancer, 2013, 119(24):4268-4276.
[59] Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease[J]. Nature, 2008, 453(7195):620.
[60] Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species[J]. Science, 2011, 331(6015):337-341.
[61] Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients[J]. Proc Natl Acad Sci, 2008, 105(43):16731-16736.
[62] 吕永坤, 堵国成, 陈坚, 等. 合成生物学技术研究进展[J]. 生物技术通报, 2015, 31(4):134-148.
[63] 周益康, 吴亦楠, 王天民, 等. 代谢物生物传感器:微生物细胞工厂构建中的合成生物学工具[J]. 生物技术通报, 2017, 33(1):1-11.
[64] Bradley R W, Buck M, Wang B. Tools and principles for microbial gene circuit engineering[J]. Journal of Molecular Biology, 2016, 428(5):862-888.
[65] Way JC, Collins JJ, Keasling JD, et al. Integrating biological redesign:where synthetic biology came from and where it needs to go[J]. Cell, 2014, 157(1):151-161. |