[1] Withers S, Keasling JD.Biosyntheis and engineering of isoprenoid small molecules[J]. Applied Microbiology and Biotechnology, 2007, 73:980-990. [2] Frohwitter J, Heider S, Peters-Wendisch P, et al.Production of the sesquiterpene(+)-valencene by metabolically engineered Corynebacterium glutamicum[J]. Journal of Biotechnology, 2014, 191:205-213. [3] Beekwilder J, van Houwelingen A, Cankar K, et al. Valencene synthase from the heartwood of Nootka cypress(Callitropsis nootkatensis)for biotechnological production of valencene[J]. Plant Biotechnology Journal, 2014, 12(2):174-182. [4] Scholtmeijer K, Cankar K, Beekwilder J, et al.Production of(+)-valencene in the mushroom-forming fungus S. commune[J]. Applied Microbiology and Biotechnology, 2014, 98(11):5059-5068. [5] Wang L, Zhao SJ, Cao HJ, et al.The isolation and characterization of dammarenediol synthase gene from Panax quinquefolius and its heterologous co-expression with cytochrome P450 gene PqD12H in yeast[J]. Functional & Integrative Genomics, 2014, 14(3):545-557. [6] Kuroda Si, Itoh Y, Miyazaki T, et al.Efficient expression of genetically engineered hepatitis B virus surface antigen P31 proteins in yeast[J]. Gene, 1989, 78:297-308. [7] Asadollahi MA, Maury J, Moller K, et al.Production of plant sesquiterpenes in Saccharomyces cerevisiae:effect of ERG9 repression on sesquiterpene biosynthesis[J]. Biotechnol Bioeng, 2008, 99(3):666-677. [8] Ro D-K, Paradise EM, Ouellet M, et al.Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440:940. [9] Ozaydin B, Burd H, Lee TS, et al.Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production[J]. Metab Eng, 2013, 15:174-183. [10] Montañés FM, Pascual-Ahuir A, Proft M.Repression of ergosterol biosynthesis is essential for stress resistance and is mediated by the Hog1 MAP kinase and the Mot3 and Rox1 transcription factors[J]. Mol Microbiol, 2011, 79(4):1008-1023. [11] Henry KW, Nickels JT, Edlind TD.ROX1 and ERGR egulation in Saccharomyces cerevisiae:implications for antifungal susceptibility[J]. Eukaryot Cell, 2002, 1(6):1041-1044. [12] Paradise EM, Kirby J, Chan R, et al.Redirection of flux through the FPP branch-point in Saccharomyces cerevisiae by down-regulating squalene synthase[J]. Biotechnology and Bioengineering, 2008, 100(2):371-378. [13] Peng B, Plan MR, Chrysanthopoulos P, et al.A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2017, 39:209-219. [14] Asadollahi MA, Maury J, Schalk M, et al.Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae[J]. Biotechnology and Bioengineering, 2010, 106(1):86-96. [15] Xie W, Ye L, Lv X, et al.Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2015, 28:8-18. [16] Tawornsamretkit I, Thanasomboon R, Thaiprasit J, et al.Analysis of metabolic network of synthetic Escherichia coli producing linalool using constraint-based modeling[J]. Procedia Computer Science, 2012, 11:24-35. [17] Vemuri GN, Eiteman MA, McEwen JE, et al. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae[J]. Proc Natl Acad Sci USA, 2007, 104(7):2402-2407. [18] Chen Y, Xiao W, Wang Y, et al.Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering[J]. Microbial Cell Factories, 2016, 15(1):1-13. [19] Yamada R, Tanaka T, Ogino C, et al.Gene copy number and polyploidy on products formation in yeast[J]. Applied Microbiology and Biotechnology, 2010, 88(4):849-857. [20] Lian J, Mishra S, Zhao H.Recent advances in metabolic engineering of Saccharomyces cerevisiae:New tools and their applications[J]. Metabolic Engineering, 2018, 50:85-108. [21] Lian J, Jin R, Zhao H.Construction of plasmids with tunable copy numbers in Saccharomyces cerevisiae and their applications in pathway optimization and multiplex genome integration[J]. Biotechnology and Bioengineering, 2016, 113(11):2462-2473. [22] Shi S, Liang Y, Zhang MM, et al.A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2016, 33:19-27. [23] Shi S, Valle-Rodriguez JO, Siewers V, et al.Engineering of chromosomal wax ester synthase integrated Saccharomyces cerevisiae mutants for improved biosynthesis of fatty acid ethyl esters[J]. Biotechnology and Bioengineering, 2014, 111(9):1740-1747. |