Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (10): 116-126.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0232
Previous Articles Next Articles
WU Xue-ling1,2(), ZHOU Xiang-yu1, WU Xiao-yan1, LUO Kui1, GU Yi-chao1, ZHOU Han1, LIAO Wan-qing1, ZENG Wei-min1,2()
Received:
2020-03-06
Online:
2020-10-26
Published:
2020-11-02
Contact:
ZENG Wei-min
E-mail:wxlcsu@csu.edu.cn;zengweimin1024@126.com
WU Xue-ling, ZHOU Xiang-yu, WU Xiao-yan, LUO Kui, GU Yi-chao, ZHOU Han, LIAO Wan-qing, ZENG Wei-min. Construction of Tetracycline-degrading Bacterial Co-culture System and Community Analysis of Wastewater Remediation[J]. Biotechnology Bulletin, 2020, 36(10): 116-126.
添加浓度/ (mg?L-1) | 回收率/100% | ${x}^{-}±SD \%$ | CV/100% | ||
---|---|---|---|---|---|
1 | 2 | 3 | |||
10 | 87.01 | 88.23 | 89.06 | 88.14±0.84 | 0.95 |
40 | 86.04 | 87.68 | 89.52 | 87.75±1.42 | 1.61 |
添加浓度/ (mg?L-1) | 回收率/100% | ${x}^{-}±SD \%$ | CV/100% | ||
---|---|---|---|---|---|
1 | 2 | 3 | |||
10 | 87.01 | 88.23 | 89.06 | 88.14±0.84 | 0.95 |
40 | 86.04 | 87.68 | 89.52 | 87.75±1.42 | 1.61 |
样本 | 对照组 | Raoultella sp. XY-1 | Pandoraea sp. XY-2 | 共培养系统 | 时间/d | 显著性 |
---|---|---|---|---|---|---|
四环素浓度 | 80.83±1.05a | 80.38±0.55a | 81.77±1.59a | 79.77±0.70a | 0 | 0.112 |
65.90±0.74a | 19.1±0.07c | 28.94±0.32b | 13.91±0.08d | 12 | 1.000 |
样本 | 对照组 | Raoultella sp. XY-1 | Pandoraea sp. XY-2 | 共培养系统 | 时间/d | 显著性 |
---|---|---|---|---|---|---|
四环素浓度 | 80.83±1.05a | 80.38±0.55a | 81.77±1.59a | 79.77±0.70a | 0 | 0.112 |
65.90±0.74a | 19.1±0.07c | 28.94±0.32b | 13.91±0.08d | 12 | 1.000 |
检测项目 | 空白 | 对照组 | 实验组 | 检测项目 | 空白 | 对照组 | 实验组 | |
---|---|---|---|---|---|---|---|---|
四环素浓度 | 3.34278 | 2.23645 | 1.03205 | pH | 6.82 | 7.04 | 8.31 | |
CODCr | 462.16 | 386.56 | 224.65 | NH4+-N | 3.92 | 3.66 | 2.03 | |
总氮 | 27.45 | 23.22 | 12.33 | NO3--N | 18.32 | 12.64 | 4.96 | |
Ag | <0.001 | <0.001 | <0.001 | As | 0.031 | 0.011 | <0.005 | |
Cd | 0.006 | 0.002 | <0.001 | Co | 0.015 | 0.004 | <0.001 | |
Cr | 0.013 | 0.009 | <0.002 | Cu | 0.311 | 0.201 | 0.152 | |
Fe | 0.587 | 0.392 | <0.005 | Hg | 0.007 | 0.003 | 0.003 | |
Mn | <0.001 | <0.001 | <0.001 | Ni | 0.015 | 0.006 | 0.003 | |
Pb | <0.009 | <0.009 | <0.009 | Zn | 0.321 | 0.154 | <0.001 |
检测项目 | 空白 | 对照组 | 实验组 | 检测项目 | 空白 | 对照组 | 实验组 | |
---|---|---|---|---|---|---|---|---|
四环素浓度 | 3.34278 | 2.23645 | 1.03205 | pH | 6.82 | 7.04 | 8.31 | |
CODCr | 462.16 | 386.56 | 224.65 | NH4+-N | 3.92 | 3.66 | 2.03 | |
总氮 | 27.45 | 23.22 | 12.33 | NO3--N | 18.32 | 12.64 | 4.96 | |
Ag | <0.001 | <0.001 | <0.001 | As | 0.031 | 0.011 | <0.005 | |
Cd | 0.006 | 0.002 | <0.001 | Co | 0.015 | 0.004 | <0.001 | |
Cr | 0.013 | 0.009 | <0.002 | Cu | 0.311 | 0.201 | 0.152 | |
Fe | 0.587 | 0.392 | <0.005 | Hg | 0.007 | 0.003 | 0.003 | |
Mn | <0.001 | <0.001 | <0.001 | Ni | 0.015 | 0.006 | 0.003 | |
Pb | <0.009 | <0.009 | <0.009 | Zn | 0.321 | 0.154 | <0.001 |
[1] | 闫琦, 刘培培, 张娇娇, 等. 畜禽粪便中残留四环素类抗生素的研究概况[J]. 家畜生态学报, 2018,39(5):80-86. |
Yan Q, Liu P, Zhang J, et al. Research survey of tetracyclines in animal manure[J]. Acta Ecologae Animalis Domastici, 2018,39(5):80-86. | |
[2] |
Halling-Sørensen B. Algal toxicity of antibacterial agents used in intensive farming[J]. Chemosphere, 2000,40(7):731-739.
doi: 10.1016/s0045-6535(99)00445-2 URL pmid: 10705551 |
[3] |
Jjemba PK. Excretion and ecotoxicity of pharmaceutical and personal care products in the environment[J]. Ecotoxicology and Environmental Safety, 2006,63(1):113-130.
URL pmid: 16399163 |
[4] | Chen L, Li H, Liu Y, et al. Distribution, residue level, sources, and phase partition of antibiotics in surface sediments from the inland river:a case study of the Xiangjiang River, south-central China[J]. Environmental Science and Pollution Research, 2020(27):2273-2286. |
[5] |
Wang G, Zhou S, Han X, et al. Occurrence, distribution, and source track of antibiotics and antibiotic resistance genes in the main rivers of Chongqing city, southwest China[J]. Journal of Hazardous Materials, 2020,389:122110.
URL pmid: 31978820 |
[6] | Selvam A, Kwok K, Chen Y, et al. Influence of livestock activities on residue antibiotic levels of rivers in Hong Kong[J]. Environmental Science and Pollution Research, 2017,10(24):9058-9066. |
[7] | Xueling W, Yichao G, Xiaoyan W, et al. Construction of a tetracycline degrading bacterial consortium and its application evaluation in laboratory-scale soil remediation[J]. Microorganisms, 2020,2(8):292. |
[8] |
Leng Y, Bao J, Song D, et al. Background nutrients affect the biotransformation of tetracycline by Stenotrophomonas maltophilia as revealed by genomics and proteomics[J]. Environment Science & Technology, 2017,51(18):10476-10484.
doi: 10.1021/acs.est.7b02579 URL |
[9] |
Shao S, Hu Y, Cheng J, et al. Biodegradation mechanism of tetracycline(TEC)by strain Klebsiella sp. SQY5 as revealed through products analysis and genomics[J]. Ecotoxicology and Environmental Safety, 2019,185:109676.
doi: 10.1016/j.ecoenv.2019.109676 URL pmid: 31539769 |
[10] | 苏宏南, 陈切希, 赵甲元, 等. 微生物共培养降解β-氯氰菊酯的适宜条件[J]. 食品与发酵工业, 2018,44(7):8-12. |
Su H, Chen X, Zhao J, et al. Appropriate conditions of β-cypermethrin degradation by a co-culture of microorganism[J]. Food and Fermentation Industries, 2018,44(7):8-12. | |
[11] |
Li B, Zhang T, Yang Z. Immobilizing unicellular microalga on pellet-forming filamentous fungus:Can this provide new insights into the remediation of arsenic from contaminated water?[J]. Bioresource Technology, 2019,284:231-239.
doi: 10.1016/j.biortech.2019.03.128 URL pmid: 30947137 |
[12] |
Seo H, Kim J, Jung J, et al. Complexity of cell-cell interactions between Pseudomonas sp. AS1 and Acinetobacter oleivorans DR1:metabolic commensalism, biofilm formation and quorum quenching[J]. Research in Microbiology, 2012,163(3):173-181.
URL pmid: 22202171 |
[13] | Milaković M, Vestergaard G, González-Plaza JJ, et al. Effects of industrial effluents containing moderate levels of antibiotic mixtures on the abundance of antibiotic resistance genes and bacterial community composition in exposed creek sediments[J]. Science of the Total Environment, 2020,706:136001. |
[14] | Liu H, Song C, Zhao S, et al. Biochar-induced migration of tetracycline and the alteration of microbial community in agricultural soils[J]. Science of the Total Environment, 2020,706:136086. |
[15] |
Peng X, Cao J, Xie B, et al. Evaluation of degradation behavior over tetracycline hydrochloride by microbial electrochemical technology:Performance, kinetics, and microbial communities[J]. Ecotoxicology and Environmental Safety, 2020,188:109869.
URL pmid: 31683047 |
[16] | 吴学玲, 吴晓燕, 李交昆, 等. 一株四环素高效降解菌的分离及降解特性[J]. 生物技术通报, 2018,34(5):172-178. |
Wu XL, Wu XY, Li JK, et al. Isolation and degradation characteri-stics of a efficient tetracycline- degrading strain[J]. Biotechnol-ogy Bulletin, 2018,34(5):172-178. | |
[17] |
Wu X, Wu X, Shen L, et al. Whole Genome sequencing and comparative genomics analyses of Pandoraea sp. XY-2, a new species capable of biodegrade tetracycline[J]. Frontiers in Microbiology, 2019,10:33.
URL pmid: 30761094 |
[18] |
Qi M, Huang H, Zhang Y, et al. Novel tetrahydrofuran(THF)degradation-associated genes and cooperation patterns of a THF-degrading microbial community as revealed by metagenomic[J]. Chemosphere, 2019,231:173-183.
URL pmid: 31129398 |
[19] | Liu D, Yan X, Si M, et al. Bioconversion of lignin into bioplastics by Pandoraea sp. B-6:molecular mechanism[J]. Environmental Science and Pollution Research, 2019,26(3):2716-2770. |
[20] |
Yang J, Guo C, Liu S, et al. Characterization of a di-n-butyl phthalate-degrading bacterial consortium and its application in contaminated soil[J]. Environmental Science and Pollution Research, 2018,25(18):17645-17653.
URL pmid: 29667057 |
[21] |
Zhang X, Hao X, Huo S, et al. Isolation and identification of the Raoultella ornithinolytica-ZK4 degrading pyrethroid pesticides within soil sediment from an abandoned pesticide plant[J]. Archives of Microbiology, 2019,201(9):1207-1217.
URL pmid: 31190085 |
[22] |
Smulek W, Cybulski Z, Guzik U, et al. Three chlorotoluene-degrading bacterial strains:Differences in biodegradation potential and cell surface properties[J]. Chemosphere, 2019,237:124452.
URL pmid: 31376699 |
[23] |
Adelowo OO, Fagade OE. The tetracycline resistance gene tet39 is present in both Gram-negative and Gram-positive bacteria from a polluted river, Southwestern Nigeria[J]. Letters in applied Microbiology, 2009,48(2):167-172.
URL pmid: 19196439 |
[24] |
Leng Y, Bao J, Chang G, et al. Biotransformation of tetracycline by a novel bacterial strain Stenotrophomonas maltophilia DT1[J]. Journal of Hazardous Materials, 2016,318:125-133.
doi: 10.1016/j.jhazmat.2016.06.053 URL pmid: 27420384 |
[25] |
Li Y, Li Y, Zhao J, et al. Long-term alkaline conditions inhibit the relative abundances of tetracycline resistance genes in saline 4-chlorophenol wastewater treatment[J]. Bioresource Technology, 2020,301:122792.
URL pmid: 31978699 |
[26] | Shen L, Li Z, Wang J, et al. Characterization of extracellular polysaccharide protein contents during the adsorption of Cd(II)by Synechocystis sp. PCC6803[J]. Environment Science and Pollution Research, 2018,25(21):20713-20722. |
[27] | Qiao M, Chen W, Su J, et al. Fate of tetracyclines in swine manure of three selected swine farms in China[J]. Journal of Environment Science, 2012,24(6):1047-1052. |
[28] |
Wang Q, Li X, Yang Q, et al. Evolution of microbial community and drug resistance during enrichment of tetracycline-degrading bacteria[J]. Ecotoxicology and Environmental Safety, 2019,171:746-752.
doi: 10.1016/j.ecoenv.2019.01.047 URL pmid: 30660087 |
[29] | Awasthi MK, Duan Y, Awasthi SK, et al. Emerging applications of biochar:Improving pig manure composting and attenuation of heavy metal mobility in mature compost[J]. Journal of Hazardous Materials, 2020,389:122116. |
[30] |
Chen J, Yang Y, Liu Y, et al. Bacterial community shift and antibiotics resistant genes analysis in response to biodegradation of oxytetracycline in dual graphene modified bioelectrode microbial fuel cell[J]. Bioresource Technology, 2019,276:236-243.
URL pmid: 30640017 |
[31] |
Yuan K, Li S, Zhong F. Characterization of a newly isolated strain Comamonas sp. ZF-3 involved in typical organics degradation in coking wastewater[J]. Bioresource Technology, 2020,304:123035.
URL pmid: 32111454 |
[32] |
Xing W, Wang Y, Hao T, et al. pH control and microbial community analysis with HCl or CO2 addition in H2-based autotrophic denitrification[J]. Water Research, 2020,168:115200.
URL pmid: 31655440 |
[33] | Su J, Yang S, Huang T, et al. Enhancement of the denitrification in low C/N condition and its mechanism by a novel isolated Comamonas sp. YSF15[J]. Environmental Pollution, 2019,256:113294. |
[34] |
Barbara M, Alejandro R, Miguel H, et al. Performance and microbial community structure of an aerobic granular sludge system at different phenolic acid concentrations[J]. Journal of Hazardous Materials, 2019,376:58-67.
URL pmid: 31121453 |
[35] | Lu L, Wang B, Zhang Y, et al. Identification and nitrogen removal characteristics of Thauera sp. FDN-01 and application in sequencing batch biofilm reactor[J]. Science of the Total Environment, 2019,690:61-69. |
[36] | Zhang W, Yu C, Wang X, et al. Increased abundance of nitrogen transforming bacteria by higher C/N ratio reduces the total losses of N and C in chicken manure and corn stover mix composting[J]. Bioresource Technology, 2020,297:122410. |
[37] |
Huang Z, Wei Z, Xiao X, et al. Nitrification/denitrification shaped the mercury-oxidizing microbial community for simultaneous Hg0 and NO removal[J]. Bioresource Technology, 2019,274:18-24.
URL pmid: 30500759 |
[1] | ZHANG Hua-xiang, XU Xiao-ting, ZHENG Yun-ting, XIAO Chun-qiao. Roles of Phosphate-solubilizing Microorganisms in the Passivation and Phytoremediation of Heavy Metal Contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(3): 52-58. |
[2] | LIU Shuang, YAO Jia-ni, SHEN Cong, DAI Jin-xia. Fluorescent Quantitative PCR of nifH Gene and Diversity Analysis of Nitrogen-fixing Bacteria in the Rhizosphere Soil of Caragana spp. of Desert Grassland [J]. Biotechnology Bulletin, 2022, 38(12): 252-262. |
[3] | YANG Zong-zheng, ZHAO Xiao-yu, LIU Dan, XU Wen-shuai, WU Zhi-guo. Bioremediation of Cr(VI)-contaminated Farmland Soil by Microbacterium sp. BD6 [J]. Biotechnology Bulletin, 2021, 37(10): 81-90. |
[4] | GUO Wei, XUE Shuai, ZHANG Zhe-chao, DIAO Feng-wei, HU Jie, ZHANG Min, LIU Mei-chun, DING Sheng-li, JIA Bing-bing, SHI Zhong-qi. Research Progress on Bioremediation of Saline-alkali Grassland:A Review [J]. Biotechnology Bulletin, 2020, 36(7): 200-208. |
[5] | YUE Li-xiao, LI Deng-yun, ZHANG Jing-jing, TONG Lei. Isolation and Application Potential Exploration of a Diuron-degrading Bacterium [J]. Biotechnology Bulletin, 2020, 36(6): 110-119. |
[6] | ZHANG Guang-zhi, WANG Jia-ning, WU Xiao-qing, ZHOU Fang-yuan, ZHANG Xin-jian, ZHAO Xiao-yan, XIE Xue-ying, ZHOU Hong-zi. Diversity and Functional Activity of Trichoderma in the Rhizosphere Soil from Facility Tomato Production [J]. Biotechnology Bulletin, 2018, 34(4): 179-185. |
[7] | FENG Yan-mei, FAN Xing-hui, ZHAN Hui, TENG Shi-yu, YANG Fang, CHEN Shao-hua. Research Progress on Ecotoxicity and Microbial Degradation of Strobilurin Fungicides [J]. Biotechnology Bulletin, 2017, 33(10): 52-58. |
[8] | WEI Zheng1, FENG Wei-min1, SHI Yan-hua2, REN Lei1, YAN Yan-chun1. Isolation,Identification and Degradative Properties of Cyfluthrin-degrading Bacterial Strain [J]. Biotechnology Bulletin, 2016, 32(9): 114-122. |
[9] | Zhang Hairong, Tang Jingchun, Sun Kejing, Zhang Qingmin. Isolation and Identification of Saline-alkaline Tolerant Hydrocarbon-degrading Strains and Study on Their Saline-alkaline Tolerant Characteristics [J]. Biotechnology Bulletin, 2015, 31(1): 151-159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||